Алексей Алексеевич Тяпкин Анатолий Сергеевич Шибанов Пуанкаре Жизнь замечательных людей



бет14/30
Дата28.04.2016
өлшемі5.29 Mb.
түріКнига
1   ...   10   11   12   13   14   15   16   17   ...   30

Запрет на поиски

Такие чудесные приобретения в немалом количестве рассыпаны по страницам «Новых методов» щедрой рукой их создателя. И почти каждое из них столь же самостоятельно и автономно, как одна звезда по отношению к другой. Едва появившись на свет, они тут же проникают в другие точные науки и начинают вести независимую, порой весьма активную жизнь. Одна из теорем, сформулированных Пуанкаре для небесномеханических систем, оказалась вдруг на самом острие дискуссии, разгоревшейся между двумя известными учеными по поводу термодинамической необратимости.

Исследуя задачу трех тел, Пуанкаре пришел к весьма важному утверждению о том, что система из материальных точек, обладающих массами и движущихся по законам механики, через некоторое время обязательно должна вернуться в состояние, весьма близкое к первоначальному. Сам Пуанкаре использовал эту «теорему возвращения» при изучении стабильности солнечной системы. Но теорема оказалась на редкость универсальной. Она положила начало нынешнему учению о взаимно однозначных и взаимно непрерывных преобразованиях множеств, инвариантных относительно меры. Эта же теорема лежит у истоков современных подходов к эргодической теории. Первый выход ее за пределы небесной механики состоялся еще в 1896 году. Эрнст Цермело, молодой ассистент видного немецкого ученого Макса Планка, применил «теорему возвращения» к совокупности свободно движущихся молекул или атомов. Получалось, что протекающие в такой системе процессы обратимы. Если, например, два различных газа смешиваются после удаления разделяющей их перегородки, то можно дождаться такого момента, когда они сами собой разделятся, вернутся к исходному состоянию. Это явно противоречило утверждаемой вторым началом термодинамики необратимости всех процессов.

В спор с Цермело вступил хорошо известный уже физик Людвиг Больцман, против которого и были направлены критические стрелы немецкого ученого. Атаки с обеих сторон велись весьма темпераментно. Больцман настолько непримиримо отнесся к рассуждениям Цермело, что в полемическом задоре посоветовал ему даже не вмешиваться в дела статистической механики. Ожесточенная дискуссия вокруг «парадокса обратимости» продолжалась не один год. По мнению Больцмана, теорема Пуанкаре полностью согласовывалась с его научными положениями. Он утверждал, что для систем, состоящих из огромного числа частиц, время возврата в начальное состояние, которое является весьма маловероятным, должно быть астрономически большим. Это и означает, что, несмотря на «теорему возвращения», практически осуществляются лишь необратимые процессы как наиболее вероятные. Для смеси двух газов период, в течение которого могло бы произойти их самопроизвольное разделение, настолько велик, что никому не удается наблюдать такое необычное явление. В полемике с противником Больцман проявил весь свой сарказм, задевая порой даже Планка, стоявшего на стороне своего ученика. В результате между участвовавшими в дискуссии учеными сложились далеко не дружественные отношения, которые проявлялись и много лет спустя.

Если «теорема возвращения» породила в ученой среде неуемную вспышку страстей, то другая теорема Пуанкаре, наоборот, погасила тот азарт, который в течение двух веков сопутствовал одной проблеме небесной механики. Целых два столетия математики и механики, словно средневековые алхимики в погоне за философским камнем, вели неустанные поиски «первых интегралов» небесномеханических задач. Заманчивы были эти математические образования, построенные на основе известных законов сохранения. Согласно одному закону сохранения, если на механическую систему не действуют извне никакие силы, то центр масс ее либо остается неподвижным, либо же движется по прямой с постоянной скоростью. Так, если считать, что на Солнце и планеты не действует притяжение со стороны звезд, то центр масс солнечной системы перемещается равномерно и прямолинейно в направлении созвездия Геркулеса со скоростью 20 километров в секунду. Поскольку движение происходит в трехмерном пространстве, то можно записать шесть предельно простых математических соотношений для составляющих скорости центра масс по трем направлениям (они либо равны нулю, либо постоянны) и для трех его пространственных координат, указывающих положение этой точки. Такие соотношения между координатами и скоростями, которые, подобно «интегральным инвариантам», остаются постоянными при движении механической системы, получили название «первых интегралов». Закон сохранения момента количества движения системы дает три дополнительных «первых интеграла». И наконец, запись третьего закона сохранения — закона сохранения энергии — представляет собой еще один «первый интеграл».

«Первые интегралы» поставляли ученым уже готовые соотношения между координатами и скоростями, полученные без интегрирования дифференциальных уравнений движения. Этот обходный маневр решения задач динамики был известен давно. Лаплас в своем «Трактате» описывает и применяет все «первые интегралы» механических систем, а в XIX веке им присваивают уже почетно-возрастной титул «классические». Несмотря на общепринятое для них название, эти выражения в отличие от «интегральных инвариантов» не содержат никаких интегралов и представляются чисто алгебраическими соотношениями, которые оказывают неоценимую помощь при исследовании различных задач механики. К сожалению, их было только десять. А для полного решения задачи трех тел, например, требовалось восемнадцать «первых интегралов». Поэтому не прекращались упорные поиски недостающих «первых интегралов», которые вместе с «классическими» позволили бы получать окончательные результаты для основных задач небесной механики, минуя все неприятности, связанные с интегрированием дифференциальных уравнений. Но каждый раз, как ученые узнавали об открытии нового математического соотношения, сохраняющего постоянное значение при движении системы, рано или поздно обнаруживалось, что оно является комбинацией уже известных «первых интегралов» и не несет никаких новых возможностей. «Первые интегралы» небесной механики уподобились великим загадкам математики — квадратуре круга, трисекции угла и другим, над решением которых тщетно билось не одно поколение ученых. Не видно было конца этой бесплодной трате усилий.

Первый предостерегающий сигнал прозвучал в 1887 году, когда немецкий астроном и математик Г. Брунс строго доказал, что всякий новый «первый интеграл» задачи трех тел, выражаемый алгебраическим соотношением, непременно будет представлять собою некоторую комбинацию старых, «классических» интегралов. Теорема Брунса заставляла задуматься. Десять известных «первых интегралов» алгебраического типа исчерпывали собою все алгебраические соотношения, обладающие нужными свойствами. Естественно было теперь обратиться к поискам среди более сложных математических выражений — трансцендентных. Ведь ни одного трансцендентного «первого интеграла» еще не обнаружили. Поэтому, открыв такой «интеграл», можно быть твердо уверенным, что он действительно новый, поскольку из алгебраических «интегралов» его никак не составишь. Не относятся ли все недостающие «первые интегралы» к трансцендентным? Вопрос этот волновал теперь многих, в том числе Пуанкаре. Он начинает свое исследование проблемы и через некоторое время приходит к более общему утверждению о том, что уравнения движения задачи трех тел не допускают не только алгебраических, но и трансцендентных «первых интегралов», отличных от «классических». Это доказательство изложено в пятой главе первого тома «Новых методов», которая так и называется: «Несуществование однозначных интегралов». После такого усиления новая теорема небесной механики положила конец всяким поискам недостающих «первых интегралов». Сейчас этот фундаментальный результат известен под именем теоремы Брунса — Пуанкаре.27

Вклад, внесенный Пуанкаре в небесную механику, был столь значительным, а его исследования, суммированные в трехтомном труде, оказались столь выдающимся событием в этой науке, что, когда внезапно умер Ф. Тиссеран, возглавлявший кафедру небесной механики Парижского университета, ни у кого не возникло сомнений в том, кто должен стать его преемником. Декан факультета наук Г. Дарбу официально предлагает Пуанкаре занять вакантное место. И вот он оставляет кафедру математической физики и теории вероятностей, которой руководил уже десять лет, и утверждается единогласным решением факультетского совета в новой должности. С осени 1896 года профессор А. Пуанкаре ведет уже курсы по некоторым традиционным разделам небесной механики. Три тома этих лекций будут изданы в период с 1905 по 1910 год. Затем будут опубликованы прочитанные им лекционные курсы «О фигурах равновесия жидких масс» и «О космогонических гипотезах». Своей преподавательской и научной деятельностью он охватил все основные направления, в которых развивалась небесная механика и теоретическая астрономия с начала XX века до настоящего времени: аналитические методы небесной механики, качественные методы небесной механики и теория фигур небесных тел.

В 1900 году последовало второе после премии короля Оскара публичное признание за рубежом несомненных заслуг Пуанкаре в этих науках. Джордж Дарвин, второй сын знаменитого естествоиспытателя Чарлза Дарвина, возглавлявший в Кембриджском университете ньютоновскую кафедру, вручает ему золотую медаль Лондонского королевского астрономического общества. Но именно после этого, с начала XX века, его фундаментальный труд по небесной механике начинает играть наиболее активную роль в мировой науке. Причем значение его со временем только возрастало по мере того, как открывались все новые плодотворные возможности созданных Пуанкаре методов. Не покрылись пылью эти методы и сейчас, несмотря на более чем полувековой срок, прошедший с момента их рождения. По-прежнему они все так же новы и необходимы, как и в начале века. Правда, мечта Пуанкаре довести качественную теорию дифференциальных уравнений до того уровня, когда она позволит решать основные космогонические проблемы, так и осталась неосуществленной.

«Дальнее путешествие»

Чтобы охватить качественными методами сложные задачи небесной механики, нужно было научиться прослеживать ход кривых, представляющих решения дифференциальных уравнений, в многомерном пространстве, где отказывает пространственная интуиция и бесполезен привычный геометрический язык. Поэтому, прежде чем браться за такие качественные исследования, необходимо было сначала обзавестись соответствующим математическим аппаратом. «Метод, который дал бы нам возможность понять качественные соотношения в пространстве более чем трех измерений, оказал бы услуги, аналогичные тем, какие оказывают нам чертежи, — пишет по этому поводу Пуанкаре. — Таким методом может быть лишь Analysis situs более чем трех измерений. Однако эта ветвь науки до сих пор мало культивировалась. После Римана пришел Бетти, который ввел некоторые фундаментальные понятия, но за Бетти уже не последовал никто».

И вот внимание Пуанкаре уже приковано к Analysis situs. Это было в самый разгар его работы над третьим томом «Новых методов». Достраивая величественный храм небесной механики, великий зодчий науки одновременно закладывает фундамент новой грандиозной постройки. Никто еще не догадывается о том, какое необычное здание вознесется над этим основанием. Далеко не все математики знакомы с работами Бернгардта Римана, о которых упоминает Пуанкаре. К тому же в своей знаменитой лекции 1854 года и в одном посмертно опубликованном фрагменте выдающийся немецкий математик лишь указывает на основные отличительные черты новой математической дисциплины, которую он именует лейбницевским термином «Analysis situs», что означает дословно «анализ положения». После Бетти, который вслед за Риманом разработал некоторые первоначальные понятия этой нарождающейся науки, наступило полное затишье, даже не период накопления отдельных результатов, а именно затишье. И лишь в последнем десятилетии XIX века французский математик взял на себя весь труд по возведению и укреплению стен нового строения.

«На вопрос, каково отношение Пуанкаре к топологии, можно ответить одним предложением — он ее создал», — заявляет крупнейший тополог нашего времени, советский математик П. С. Александров. Топология — так называют сейчас науку, которую Пуанкаре, следуя Риману, величал Analysis situs. По его собственному определению, этот раздел математики «описывает взаимные положения точек, линий и поверхностей безотносительно к их величине». Геометрией относительных положений, качественной геометрией видится будущая топология ее создателю. С первого мемуара Пуанкаре по этому вопросу начинается история топологии как самостоятельной математической науки. Во введения автор задается вопросом: нужно ли заменять язык аналитического исследования языком геометрии, если в многомерном пространстве последний утрачивает свои преимущества наглядности? Конечно, «не предпринимают дальнего путешествия, чтобы увидеть то, что можно найти у себя дома». Но в отстроенном и обжитом за долгие века «доме» классической математики, имевшей дело лишь с формулами и вычислениями, он не находит того, что ему нужно. И вот Пуанкаре отваживается на «дальнее путешествие», которое приводит его в удивительный, ни на что не похожий мир неколичественной математики, изучающей неизмеряемые и непросчитываемые сущности.

Не поддается количественному выражению запах, не измеряется числом внешний вид тела. Но топология нашла подходы к количественному изучению некоторых таких качественных понятий, как, например, формы различных тел. Прежде всего нужно классифицировать все тела по их конфигурациям, то есть условиться, какие фигуры считать топологически одинаковыми. Если, деформируя одну фигуру, можно перевести ее в другую без разрывов, разрезов и склеиваний, то обе фигуры считаются топологически неразличимыми. Взяв шарообразный ком сырой глины, можно совершить с ним на гончарном круге целый ряд превращений, которые ни один тополог не признает изменением формы. Приплюснув ком сверху ладонью, получим вместо шара эллипсоид. Затем продавим в середине вмятину и, постепенно углубляя и расширяя ее, сделаем глиняную чашу. Вытянув верхнюю часть чаши, преобразим ее в кувшин, у которого можно даже оттянуть спереди «носик». Для тополога все это будет одна и та же фигура. Вот если теперь оторвать кусочек глины и прилепить к кувшину ручку, мы получим совершенно новую топологическую фигуру. Ведь мы проделаем сразу две запретные операции — разорвем материал, а потом склеим его в другом месте.

Топология характеризует геометрические тела лишь такими свойствами, которые не меняются при любых преобразованиях, если только не совершаются разрывы и склеивания. Поэтому не относятся к топологическим свойствам ни линейные размеры тела, ни угловые. А вот свойство фигуры состоять из одного цельного или из определенного числа разрозненных кусков является топологическим. Ведь, для того чтобы преобразовать, скажем, «восьмерку» в «два нуля» или наоборот, придется или разорвать фигуру, или же склеить ее несвязанные части. Число измерений фигуры тоже служит топологическим признаком. Без слипания сразу множества точек трехмерный куб не превратишь в двухмерный квадрат. Сфера и тор представляют собой примеры существенно различных топологических поверхностей. И есть топологическое свойство, их различающее: если на поверхности сферы, например мяча, изобразить произвольную замкнутую линию и сделать по ней разрез, то она обязательно распадется на две части. А на надувном спасательном круге можно произвести такой замкнутый разрез (хотя бы по «экватору»), что его тороидальная поверхность останется единым целым. Топологи тем и занимаются, что отыскивают характеристики геометрических образов, которые не меняются при разрешенных в топологии преобразованиях и называются поэтому топологическими инвариантами.

Успех топологических исследований во многом зависит от того, насколько удачными оказались найденные топологические инварианты. Как правило, стремятся к тому, чтобы такими инвариантами выступали числа иди другие хорошо знакомые математикам объекты, например группы. Тогда можно количественно изучать сугубо качественные свойства, используя уже готовый математический аппарат. Топологические инварианты как бы проецируют мир качественных сущностей на мир количественных величин. И у истоков этого чуда стоят исследования Пуанкаре. Введенные им топологические инварианты, наиболее глубокие и наиболее универсальные, до сих пор играют в топологии ведущую роль. В своем первом мемуаре по «Analysis situs» он дал понятие «фундаментальной группы». С его помощью топологические проблемы удается свести к чисто алгебраическим проблемам, которые решаются методами теории групп. Не менее фундаментальными оказались понятие гомологии и описанные в этом мемуаре числа Бетти.

Первая топологическая работа Пуанкаре была опубликована в «Журнале Политехнической школы», посвященном исполнившейся в 1894 году столетней годовщине этого прославленного учебного заведения. Наступило время юбилейных торжеств, связанных с великими установлениями свершившейся век назад французской революции. Одно из самых грандиозных празднеств состоялось в октябре 1895 года, когда Институт Франции отметил сто лет со дня своего основания.



Минерва и галльский петух

Потрясая листком бумаги, Пикар в весьма нелестных выражениях высказал свое мнение об устроителях этой затеи. Пуанкаре молчал, но в глазах его тоже читалось осуждение, смешанное с иронией. Многие проявляли недовольство официальным приглашением на религиозную церемонию, которой открывалось празднование столетия Института Франции. Приглашения были разосланы на бланках Института. Под традиционным изображением Минервы в шлеме, со змеей и галльским петухом шел текст, в котором извещалось, что 23 октября состоится торжественное утреннее богослужение в церкви Сен-Жермен-де-Пре. Древнейшая в Париже церковь, богато украшенная изнутри позолотой и стенной росписью на библейские мотивы, была в то утро переполнена. Перед заупокойной службой по всем умершим членам Института Франции епископ Перро, член Французской академии, обратился к присутствующим с проповедью, в которой пытался доказать, что ученые изыскания вполне совместимы с религиозной верой. Сам факт службы и содержание проповеди послужили поводом для толков о начале религиозного возрождения Франции и породили множество довольно резких протестов. Правда, некоторые проницательные умы усматривали в этом предприятии лишь горячее стремление епископа к кардинальскому сану, которого он и был вскоре удостоен.

— Ничего, что мы начали за упокой, лишь бы мы кончили во здравие, — с усмешкой произнес Аппель.

Все трое28 стояли в переполненном зале, явно не рассчитанном на такой наплыв гостей, вдыхая приторный запах духов и с сожалением вспоминая о вечерней уличной прохладе. От дверей доносились громкие выкрики церемониймейстера, объявлявшего фамилии и звания прибывающих гостей, которых встречали у входа Раймон Пуанкаре и его мать. Тетя Мария, на лице и фигуре которой прошедшие годы оставили свои немилосердные следы, явно упивалась блестящей карьерой боготворимого ею первенца. В 1893 году Раймон стал министром просвещения, в 1894 году — министром финансов, а в нынешнем, 1895 году ему снова предложили пост министра просвещения. Образную и яркую характеристику этого буржуазного политического деятеля дал В. И. Ленин: «…Знаменательна карьера Пуанкаре — типичная карьера буржуазного дельца, продающего себя по очереди всем партиям в политике и всем богачам „вне“ политики. По профессии Пуанкаре — адвокат с 20 лет. В 26 лет он был начальником кабинета, в 33 года министром. Богачи и финансовые тузы во всех странах высоко ценят политические связи таких ловких карьеристов. „Блестящий“ адвокат-депутат — политический пройдоха, это — синонимы в „цивилизованных“ странах».

Сейчас тридцатипятилетний министр просвещения Раймон Пуанкаре устраивал прием для съехавшихся на юбилейное празднование иностранных гостей и членов Института, не подозревая о том, что не пройдет и недели, как в результате падения кабинета Рибо он окажется всего лишь экс-министром. Через полтора часа, когда все съехались, начался концерт из музыкальных и драматических произведений авторов, бывших членами Института. Но приглашенных оказалось так много, что все не смогли поместиться в концертном зале. Поэтому выступления сопровождались глухим шумом разговоров, доносившимся из соседних помещений.

В антракте, покинув душный зал, Пуанкаре, Пикар и Аппель прошли к открытому буфету, где предлагалось шампанское со сладостями. Здесь к ним подошел, радушно улыбаясь, Раймон. Анри похвалил концерт, в котором участвовали лучшие силы Большой оперы, Комической оперы и Французского театра.

— Надо думать, это маленький Елисейский дворец, — не без лукавства произнес он полувопросительным тоном, намекая на предстоящий через день прием у президента республики.

— Во всяком случае, здесь мы увидели гораздо больше наших коллег, чем на заседаниях академии, — добавил Аппель, вызвав своим замечанием общий смех.

Как правило, собрания членов Академии наук, которые происходили раз в неделю, по понедельникам, были не очень многочисленными. Редко когда на них являлось свыше 50 человек, а в летнее время, помимо председателя и непременного секретаря, присутствовало порой лишь несколько академиков. Но последнее заседание, состоявшееся 21 октября, накануне юбилейного празднества, было на редкость многолюдным. На нем присутствовали даже многие из иностранных членов и корреспондентов академии.

Свыше ста зарубежных членов Института Франции съехались в эти дни в Париж. 24 октября большой зал нового здания Сорбонны был заполнен депутатами различных ученых корпораций, университетов и школ Франции, представителями магистратуры, адвокатуры и членами дипломатического корпуса, собравшимися на торжественное заседание всех академий. Поскольку все были одеты в свои традиционные форменные наряды, казалось, что в зале затевается грандиозное костюмированное представление. Среди роскошных мантий всевозможных цветов и оттенков мелькали важные фигуры высших сановников в горностаевых пелеринках и группы студентов в темных беретах, сдвинутых набок, и в шарфах через плечо. Академики в расстегнутых мундирах, обильно вышитых зеленым шелком, в белых суконных жилетах, с короткими шпагами у бедра и с треугольными шляпами в руках, держались плотной массой в центре зала.

На трибуну вышел престарелый Ж. Симон, член двух академий, известный публицист и политический деятель. Его пространная речь была плохо слышна в глубине зала, не раз голос изменял докладчику, и слушатели под конец начали уже выражать свое нетерпение. Чересчур откровенные ораторские приемы выступавшего, его преувеличенно странные жесты и резкие переходы от шепота к крику раздражали Пуанкаре. В речи академика звучала откровенная тоска по белой королевской линии, и трудно было поверить, что это тот самый Симон, которого во времена империи лишили кафедры за свободомыслие. Лишь заключительные его слова заставили Анри очнуться от невеселых размышлений о коварстве времени, неузнаваемо преображающего людей, сегодняшние дела которых начинают противоречить их прежним убеждениям.

— Вот уже 25 лет, как мир присутствует при странном зрелище. С одной стороны, правительства с ожесточением готовятся к войне. Строят крепости, отливают пушки, наполняют снарядами арсеналы. Бросают миллиарды в эту пропасть. Всеобщая воинская повинность отнимает необходимые руки у земледелия и промышленности. Можно подумать, что завтра должна разгореться всемирная война…

Вконец уставший старческий голос на время умолк. Пуанкаре видел, как сверкнули глаза у Раймона, сидевшего на возвышении среди почетных гостей и членов правительства, по правую руку президента республики. У его кузена, сторонника жесткой внешней политики по отношению к недоброжелателям Франции, такие слова не могут вызвать сочувствия.

— С другой стороны, все философы, публицисты, государственные деятели и даже сами государи громко заявляют о своем отвращении к войне. Всюду образуются лиги мира, собираются конгрессы, протестующие против вооруженного мира, более разорительного, чем самая кровопролитная война. Увы! Эти конгрессы заявляют о своих заветных мечтаниях, но надежд с собою не приносят никаких. Человечеству нужны не слова, не вздохи, нужны действия, факты…

После речи Симона на трибуну решительным, деловым шагом взошел Раймон Пуанкаре. В отличие от предыдущих ораторов он начал читать свою речь по бумаге, хотя, как опытный адвокат, прекрасно мог обойтись без лежащего перед ним листа. Это обстоятельство немало удивило Анри. Быть может, таков был новый стиль Раймона, стиль ответственного государственного человека, слишком погруженного в важные заботы, чтобы уделять внимание внешней стороне своего выступления. Читал он громким, резким голосом, с превосходной дикцией, так что ни одно слово его речи не пропало для слушателей.

— Ровно сто лет назад, в день открытия Института, мой далекий предшественник, министр просвещения Дону выражал твердую уверенность, что новооснованный союз академий послужит к установлению мира сначала среди просвещенных людей, а затем и на всем свете. Однако этим прекрасным надеждам не суждено было сбыться. В девятнадцатом веке мир неоднократно прерывался войнами. Невозможно тешить себя иллюзиями, что грядущий двадцатый век пройдет без войны. Поэтому нужно радоваться хотя бы таким мгновениям перемирия, как нынешнее торжество, собравшее ученых представителей всей семьи народов…

Раймон говорил без остановки, не позволяя прерывать себя рукоплесканиями. Его речь, посвященная восхвалению Института Франции и его членов, почти сплошь состояла из общих мест и довольно банальных мыслей, к тому же выраженных несколько витиевато и напыщенно. Анри был благодарен ему хотя бы за то, что в отличие от предыдущего оратора он обошелся без претенциозной и неестественной декламации.

Вечером они вновь встретились в отеле «Континенталь», где состоялся праздничный банкет. Карточки с указанием места были приготовлены только для пяти президентов и непременных секретарей академий, а также для иностранных гостей. Остальные разместились за длинным столом по собственному усмотрению. Анри и Раймон сели рядом. Некоторое время они продолжали неторопливую беседу, но, убедившись, что мысли кузена заняты лишь судьбой закона о пропорциональном и прогрессивном налоге на наследство, который он выработал, еще будучи министром финансов, и который застрял в сенате, Анри вскоре потерял интерес к разговору. Внимание его переключилось на приветственные тосты иностранных, гостей. Выступал почтенный старик с седой бородой, который на французском языке, но с заметным английским акцентом читал адрес Лондонского королевского общества.

— Основание Института, объединившего пять академий, занятых исключительно открытием законов природы и развитием искусств, составляет эру в истории цивилизации, — возглашал лорд Кельвин, знаменитый физик. — Этим учреждением может гордиться не только Франция, но и весь образованный мир…

Анри с интересом вглядывался в величавый облик выдающегося английского ученого, чей знаменитый «Трактат» явился одним из стимулов, подвигнувших его на исследование фигур равновесия вращающейся жидкости. Труды эти сыграли не последнюю роль в состоявшемся весной прошлого года избрании Пуанкаре членом Лондонского королевского общества. Это было уже пятое почетное избрание его за рубежом.

— Труды Пастера, вдохновленные чистою и возвышенною любовью к науке, были приняты всем миром с беспредельным удивлением и признательностью, — продолжал между тем Кельвин.

Удивление и признательность… Сколько раз уже испытывал их Анри, когда его мысль после долгих дней изнурительной и бесплодной работы получала извне благодатный толчок и начинала вдруг щедро плодоносить, изумляя самого творца снизошедшими на него откровениями. Удастся ли когда-нибудь постичь тот сокровенный механизм человеческого мозга, которому обязаны своим рождением все великие научные открытия? Вопрос этот не раз уже всплывал в сознании Анри, не устававшего удивляться посещающим его внезапным озарениям. Кто, например, может объяснить, как пришла к нему совсем недавно идея решения труднейшей математической задачи? Какую роль сыграла тут работа Карла Неймана, великолепный метод которого он так удачно трансформировал? Остается только удивляться, как сам Нейман, работающий в том же направлении, не наткнулся на столь счастливую находку. Анри не слышит уже, как лорд Кельвин горячо уверяет присутствующих в том, что Франция — это «альма-матер» его далекой юности, что французские ученые Лаплас, Реньо и Лиувилль научили его постигать красоту научных истин и навсегда приковали его к колеснице науки. Не слышит он и ответных рукоплесканий французских академиков, тронутых столь лестными словами английского ученого. Глаза его заволокла дымка раздумья, и все происходящее скользит мимо его обращенного вовнутрь внимания.

В неторопливый, размеренный говор за столом вмешался шум отодвигаемого стула. Пуанкаре поднялся и с отсутствующим видом начал прохаживаться за спинами сидящих. Те, кто знал его не первый день, старались погасить улыбку в глазах и как ни в чем не бывало продолжали беседу.

Такие странности знаменитого мэтра были уже не в диковинку. Его ставшая популярной в ученых кругах фигура обросла передаваемыми из уст в уста невероятными, анекдотичными случаями, как днище старого корабля ракушками. Морис д’Окань рассказывал, например, как, прогуливаясь с Пуанкаре по аллеям Люксембургского сада, он заметил, что его уважаемый собеседник, рассуждая на свои излюбленные математические темы, приподымает порой шляпу, видимо здороваясь с кем-то. Решив, что навстречу им попадаются коллеги Пуанкаре по университету, д’Окань тоже стал приветствовать их одновременно с ним. Каково же было его изумление, когда он увидел, что Пуанкаре повторяет этот казавшийся ему приветственным жест на аллее, где они были совершенно одни!

Беседа за столом текла своим чередом, лишь некоторые из иностранных гостей с недоумением поглядывали то на вышагивающую взад-вперед фигуру, то на своих соседей. Но, видя вокруг себя невозмутимые лица, успокоились и они. А Пуанкаре, не обращая ни на кого внимания, мерил мелкими шагами зал, выставив вперед голову и шевеля пальцами заложенных за спину рук. В такие минуты для него не существовало тирании светского этикета. Творческий акт — это не комната, в которую когда хочешь — войдешь, когда хочешь — выйдешь. Мысли, всплывающие из самых глубин нашего существа, настолько пугливы, что достаточно отвлечься хотя бы на секунду, и они бесследно исчезают, как утреннее наваждение. Успеха добивается только тот, кто незамедлительно следует их призывному голосу.

Вскоре подали кофе, и некоторые из присутствующих, встав из-за стола, закурили.

— Не хватает только карточных столов, — с такими словами Пикар подошел к Пуанкаре. — Раз ты не куришь, почему бы тебе не выпить кофе?

— Так поздно не могу, иначе не засну до глубокой ночи, — ответил Анри. — В последнее время что-то мучает бессонница.

— Попробуй работать, пока не захочешь спать, — посоветовал Пикар.

— Пробовал, и весьма успешно. Только после этого требуется еще больше времени, чтобы заснуть.

Пикар вынул из кармана часы и вздохнул.

— В таком случае забираем Поля и отправляемся домой. Уже скоро полночь.

Отыскав в нестройно гудящей толпе Аппеля, они вместе с ним покинули банкетный зал.

За убегающим горизонтом

Юбилейные торжества продолжались четыре дня. На следующее утро академики присутствовали на праздничном представлении в театре «Комеди Франсез». А вечером для них был устроен раут в Елисейском дворце. Миновав почетный караул, выстроившийся по обе стороны лестницы, гости входили в приемный зал, где их встречал президент республики Ф. Фор со своей свитой. Прибывшие по очереди представлялись президенту, который всем одинаково улыбался и подавал руку. Пуанкаре обратил внимание, что приглашенных здесь было меньше, чем на приеме у Раймона. Да и сам прием во дворце прошел куда скромнее, без какого бы то ни было представления или концерта. Но именно поэтому Анри показалось намного уютнее в небольших, но щедро украшенных гобеленами и декоративными растениями залах дворца.

Президент, высокий, плотный и несколько сутуловатый, расхаживал среди гостей, то и дело потирая свои руки, словно был чем-то весьма доволен. (Кто-то рядом с Пуанкаре заметил вполголоса, что господин Фор «умывает руки после своего очередного политического хода».) Сопровождали его пять-шесть офицеров разных чинов. «Почетная свита или мера предосторожности?» — гадал Пуанкаре. Немногим больше года прошло с тех пор, как президент Сади Карно пал от руки анархиста. А еще за полгода до этого произошел взрыв бомбы в зале заседаний Палаты депутатов. Вспышка анархо-террористической деятельности охватила страну. Взрывы бомб гремели в кафе, в церквах, в полицейских участках. Политический горизонт был весьма неспокойным, и это очень волновало Эрмита. Старый математик пребывал в тревожном, возбужденном состоянии. Пуанкаре так и не решился обсуждать с ним свои топологические идеи. Ему хорошо была известна та неприязнь, которую Эрмит испытывал к геометрическим исследованиям, поэтому на одобрение его он не рассчитывал.

Следующую свою работу по топологии Пуанкаре опубликовал лишь в 1899 году. Это было первое из тех пяти дополнений к основному мемуару «Analysis situs», которые вышли в свет до 1904 года. В них автор встал уже на комбинаторную точку зрения, введя широко известный ныне в топологии метод симплициального разбиения или триангуляции. Идея его заключается в том, что на поверхности изучаемой фигуры наносится сетка с треугольными ячейками. Это позволяет успешно применять для ее топологического исследования эффективные средства, разработанные большей частью самим Пуанкаре.

Еще Л. Эйлером была высказана замечательная теорема о многогранниках: если к числу вершин любого многогранника прибавить число его граней и вычесть из этой суммы число ребер, то в итоге всегда будет получаться цифра два. Метод триангуляции позволяет обобщить теорему Эйлера на любую фигуру, даже на округлую, ведь нарисованные на ее поверхности треугольные ячейки можно считать гранями воображаемого многогранника. Расчеты по формуле Эйлера снова дадут цифру. Каждой внешней форме тела можно сопоставить, таким образом, число, топологический инвариант, значение которого определяется только видом поверхности. Для сферы и тора, например, эти числа различны. Пуанкаре обобщил теорему Эйлера на многомерные фигуры, то есть доказал формулу, связывающую число вершин, ребер и граней непредставимого воображением многогранника в многомерном пространстве. И в многомерной геометрии появился числовой топологический инвариант, предельно простой по смыслу и удобный в употреблении.

Современного читателя топологических работ Пуанкаре поражают удивительная завершенность, законченность, довольно-таки неожиданная для периода младенчества этой науки. Причем законченность не в смысле доскональности и совершенства математических доказательств, а в смысле точности и полноты введенных им понятий и методов. Изложенные в этих статьях идеи в течение всех последующих десятилетий питали топологию своей живительной силой. Следуя за новаторской мыслью Пуанкаре, многочисленные исследователи развили в математике новое мощное и обширное направление, напоминающее ныне густо ветвящееся дерево. «Величайший представитель классической математики „взорвал изнутри“ ее традиции и открыл доступ в нее не только новым методам исследования, но, что, может быть, еще важнее, и новым способам видеть вещи и интересоваться ими», — пишет академик П. С. Александров. Однако в конце XIX века и несколько позже рядом с ослепительным храмом небесной механики новоотстроенное здание никому не известной еще математической дисциплины выглядит совсем не впечатляюще. По сравнению с другими успехами Пуанкаре «Analysis situs» кажется его современникам несравненно более скромным достижением. Даже Эмиль Пикар, хорошо осведомленный о глубинных течениях творческой мысли своего друга, в обзорном докладе 1913 года о его математических работах ни словом не упоминает эти статьи. И только позже, с дистанции прошедших десятилетий, ученые смогли по достоинству оценить всю грандиозность топологических построений Пуанкаре.

Но топология — это всего лишь один из многих полюсов его тяготения в тот период. Научное творчество Пуанкаре движется сразу по нескольким руслам, в нем бьют сразу несколько обособленных потоков. Не исчерпывается оно даже таким громадным и многообразным трудом, как «Новые методы небесной механики». В многолетнюю работу над этим фундаментальным сочинением вторгаются другие научные интересы, никак не связанные с небесной механикой. Весьма занимает его ум, например, одна знаменитая математическая проблема, оказавшаяся довольно крепким орешком для крупнейших математиков. В свое время Лежен-Дирихле и Бернгардт Риман, основываясь на интуитивных соображениях, утверждали, что всегда существует решение краевой задачи для уравнения Лапласа, дифференциального уравнения с частными производными. Простые физические соображения внушали такую мысль, поскольку для соответствующих этой математической задаче реальных примеров непременно должен был наблюдаться какой-то результат. Это утверждение, облеченное в сложную математическую форму, легло в основу принципа Дирихле. Ученые свободно пользовались этим принципом в своих теоретических изысканиях, уверенные в его справедливости.

Так продолжалось до тех пор, пока К. Вейерштрасс, заинтересовавшийся этим вопросом, не подверг эту необоснованную уверенность сокрушительной математической критике. Его выводы повергли математиков в смятение. Весьма важный и широкоупотребительный принцип Дирихле сразу стал камнем преткновения. Строго доказать этот принцип никто не мог, а применять, как и раньше, не утруждая себя его обоснованием, казалось уже неправомерным. Не будь он столь важным и необходимым, от него давно бы отказались, столь велики были трудности, связанные с его доказательством. Но принцип Дирихле с успехом использовался в задачах гидродинамики, в теории упругости, в теории распространения тепла, в теории электричества, в теории ньютоновского притяжения и в других прикладных теориях. Время шло, а решение проблемы не приходило. Математики начали уже терять надежду на спасение столь ценного для них средства исследования. Карл Нейман сетовал на то, что принцип Дирихле, «такой красивый и имеющий такие важные приложения в будущем, навечно исчез из поля зрения».

Пуанкаре приступил к этой труднейшей проблеме в самый разгар своих небесномеханических увлечений. В 1890 году вышел в свет его мемуар, в котором он доказал существование функции, удовлетворяющей условиям задачи Дирихле, то есть доказал возможность ее решения. Добиться успеха помог ему весьма остроумный и оригинальный математический метод, названный автором методом выметания. Так впервые был обоснован принцип Дирихле для довольно широкого класса задач. «Одного этого исследования, независимо от всех других, было бы, на мой взгляд, достаточно, чтобы доставить автору почетную известность», — заявил видный советский математик, академик В. А. Стеклов.

В 1894 и 1896 годах появляются еще два больших мемуара Пуанкаре, посвященных решению дифференциальных уравнений с частными производными. В них автор решает задачи о распределении теплоты в твердом теле, о звуковых частотах, издаваемых вибрирующей мембраной. В них же он применяет расширенный им метод К. Неймана для решения задачи Дирихле. Эти исследования привели его к открытию новых функций, которые называются теперь фундаментальными функциями Пуанкаре.

В последнем десятилетии XIX века академик Пуанкаре демонстрирует наиболее щедрую отдачу идей, несмотря на завидное непостоянство интересов. Стремительными переходами от вопроса к вопросу, от проблемы к проблеме отмечен этот период его научной деятельности. Сегодняшние темы его научных работ непохожи на вчерашние и не имеют ничего общего с теми, что завладеют его умом завтра. Такие различные по характеру и содержанию, они накладываются друг на друга, совмещаясь во времени, конкурируют в его сознании и оспаривают друг у друга драгоценные часы его творчества.

Постоянная потребность видеть новое была отличительной чертой характера Пуанкаре. Для него гораздо важнее то, что будет, чем то, что есть. Поэтому он вечно в пути, вечно в погоне за убегающим горизонтом, за недостижимой во всей своей полноте и во всем своем многообразии научной истиной. Мысль его всегда нацелена вперед, в еще не наступивший день, как будто она стремится опередить саму себя, едва назревшие свои решения. Только что Пуанкаре исследовал периодические движения небесных тел, и вот уже внимание его приковано к доказательству теоремы Клаузиуса в термодинамике; не успев закончить обоснование принципа Дирихле, он уже публикует основополагающий труд по топологии. Головокружительная смена стилей и методов, тем и теорий вызывает в воображении образ всадника на горячем, нервном скакуне.

Некоторые из хорошо знавших Пуанкаре современников свидетельствовали, что когда он чувствовал интерес к проблеме, то включался в работу легко и непринужденно. Именно в такие минуты с наибольшей силой проявлялась его ставшая уже легендарной рассеянность. Зато с большим трудом сбрасывал он умственное напряжение, если решение задачи не было еще завершено. Во время вынужденных перерывов его творчество продолжалось подсознательно даже в часы отдыха. Поэтому Пуанкаре, страдавший бессонницей, избегал работать поздно вечером, после ужина. Если же тема не привлекала его, то он не мог чисто волевым усилием заставить себя трудиться над ней. Собственная незаинтересованность была для него самым непреодолимым препятствием в научной деятельности. Впрочем, интересы ученого были столь широки, что такое случалось нечасто.

С 1893 года Пуанкаре можно было встретить в небольшом зале Института Франции, где заседало Бюро долгот. Его выбрали членом этого авторитетнейшего научного учреждения. И это не было простой данью быстро растущему престижу знаменитого ученого. Он становится одним из наиболее деятельных участников проводимых этой организацией мероприятий. В октябре 1895 года на очередном заседании заслушивается доклад Пуанкаре о новой магнитной съемке на всех морях, предпринятой по инициативе Бюро долгот и Морского министерства. В 1899 году он был избран президентом этого прославленного учреждения, членом которого состоял великий Лаплас.

В 1901 году выходят в свет две его статьи о гравиметрических измерениях и об отклонениях от вертикали в геодезических исследованиях. Геодезия какой-то своей гранью примыкает к обширному математическому миру, и эти работы не стояли в стороне от его основного научного творчества. Известно, что великий Гаусс, «гёттингенский колосс», к важнейшим своим результатам по дифференциальной геометрии и теории поверхностей пришел от практических задач, которые ему приходилось решать при геодезической съемке Ганноверского королевства. Точно так же геодезические и картографические работы Бельтрами привели его к исследованиям по дифференциальной и неевклидовой геометрии. Но для Пуанкаре те задачи, которые входили в компетенцию Бюро долгот, сами по себе представляли непосредственный интерес. Когда был предложен проект об уточнении длины дуги меридиана, французское правительство передало его на рассмотрение Пуанкаре, который представил самый детальный отзыв, обсудив даже финансовую сторону дела. В начале XX века он руководит деятельностью геодезической экваториальной экспедиции, выполнявшей новые, более точные измерения дуги меридиана, не проводившиеся с XVIII века.

Порой сугубо математические исследования приводят Пуанкаре к решению прикладных задач, а те, в свою очередь, привлекают его внимание к новым математическим проблемам. Так, например, удачно применив расширенный им метод Неймана к уравнению Лапласа, он решил исследовать этим же математическим приемом равновесие и движение морей. Над задачей этой бились многие поколения ученых, начиная с самого Ньютона, разработавшего первую статическую теорию приливов. Лорд Кельвин, развивая эту статическую теорию, получил явные несообразности. По его вычислениям получалось, что упругие постоянные твердого ядра Земли должны превосходить упругие постоянные стали. Проанализировав его решение, Пуанкаре указал, какие следует внести дополнения в расчеты. Но с этими исправлениями математическая теория приливных колебаний морей существенно усложнилась.

В двух своих статьях 1896 года о равновесии и движении морей Пуанкаре возлагает надежды на теорию интегральных уравнений, которая должна принести решение задачи, столь долго испытывавшей терпение исследователей. С этого момента часть его усилий направлена в эту новую, весьма не разработанную еще область математики. В круг его внимания, помимо дифференциальных уравнений, попадает еще один математический объект — интегральные уравнения. Все первое десятилетие XX века у него будет сохраняться к ним интерес.

Математическое отделение Академии наук состояло из пяти секций: геометрии, механики, астрономии, физики, географии и навигации. До этого времени у Пуанкаре были все основания, чтобы числиться по любой из первых четырех секций. Новые его работы по геодезии и теории морских приливов давали ему право войти в пятую секцию. Широта его интересов вполне совмещалась с широтой охвата научных проблем математическим отделением академии, а последняя, в свою очередь, определялась запросами той эпохи. На примере многих работ Пуанкаре легко проследить, как его исследования, порой кажущиеся весьма отвлеченными, на самом деле подсказываются потребностями прикладного характера. Но от самого Пуанкаре можно услышать как будто бы иное мнение. «…Я не становлюсь на точку зрения тех лиц, которые ценят в науке только ее прикладную часть. Мне не надо добавлять, что я не разделяю такой точки зрения», — пишет он в одной из своих статей. В другом случае он заявляет еще более категорично: «Наука, созданная исключительно в прикладных целях, невозможна; истины плодотворны только тогда, когда между ними есть внутренняя связь. Если ищешь только тех истин, от которых можно ждать непосредственных практических выводов, то связующие звенья исчезают и цепь разрушается». Говоря о формуле «наука для науки», он добавляет, что это стоит тезиса «жизнь для жизни» или «счастье для счастья».

Как совместить эти взгляды с его собственным творчеством? Противоречия тут нет. Пуанкаре действительно считал решение прикладных задач важнейшим фактором развития науки, но никогда не ограничивал научные запросы узкоутилитарными, материальными потребностями.

Он отвергает примитивно понимаемый, деляческий практицизм, приземляющий научное творчество и иссушающий его душу. В то же время не кидался он и в другую крайность, не ратовал за сугубо абстрактные исследования, оторванные от насущных задач познания, хотя именно так его порой понимали. Даже математика, самая абстрактная из всех наук, не может, по его мнению, отвернуться от окружающего мира. «Нужно было бы полностью забыть историю науки, чтобы отрицать постоянное и самое благотворное влияние на развитие математики стремления познать природу, — говорит Пуанкаре с трибуны I Международного математического конгресса. — Чистый математик, который забыл бы о существовании внешнего мира, был бы подобен живописцу, умеющему гармонически сочетать цвета и формы, но лишенному натуры, модели, — его творческая сила быстро иссякла бы». И действительно, задачи, которые привлекают его внимание, не вырастают сами из себя; корни их тесно переплетены с самыми животрепещущими, а порой и просто практическими проблемами познания. Даже самые отвлеченные, казалось бы, образы топологии рождены потребностью качественного изучения сложных небесномеханических задач. Каждое открытие Пуанкаре — это дитя необходимости и вдохновения.



Мост к новому образу мышления

В молодости Анри был худощавым, но к сорока годам он постепенно достиг нормальной для своего среднего роста комплекции. Близорукие и в то же время проницательные глаза его во время разговора сосредоточенно вглядывались в собеседника сквозь стекла очков. Порой взгляд этот становился задумчиво-рассеянным, и тогда невозможно было понять, слышит ли он обращенные к нему слова. На кафедре Пуанкаре выглядел физически неловким и неуверенным до тех пор, пока не увлекался излагаемым материалом. С демонстрационными приборами у него были постоянные нелады. Таким запомнился он некоторым студентам, посещавшим его лекции.

Читая подготовленный и обработанный им курс секций, Пуанкаре порой не следует намеченному на бумаге порядку изложения материала, а поддается внезапно пришедшей ему в голову игре мысли. Известный физик Л. Бриллюэн, слушавший его курс лекций по космогонии, рассказывает: «Иногда Пуанкаре неожиданно прерывал лекцию и молчаливо ходил перед доской взад и вперед. Затем он поворачивался к аудитории, отодвигал в сторону свои лекционные записки и говорил: „У меня только что возникла новая идея. Попробуем, подойдет ли она“. Он излагал свою новую точку зрения и начинал писать на доске, определяя численные значения величин. Затем делал вывод: „Это не намного лучше, чем в других теориях“». Это все та же манера, которая отличала молодого Анри, сдававшего вступительные экзамены в Нормальную и Политехническую школы, та же свободная раскованность устного исследования, обнажающая ищущую мысль, те же блестки прозрения, та же полная объективность и критичность к продукции своего ума.

Гильберт, прослушавший во время пребывания в Париже курс профессора Пуанкаре, делится в письме своими впечатлениями: «Он читает свои лекции очень ясно и понятно для моего образа мышления, хотя, как заметил здесь один французский студент, пожалуй, слишком быстро». На доске профессор пишет с одинаковой легкостью и проворством как левой, так и правой рукой, чем вызывает веселое оживление в аудитории. Но почерк его оставляет желать лучшего, а чертежи, как правило, малопонятны.

Чувство веселой иронии никогда не покидает Пуанкаре. Один из его слушателей рассказывал впоследствии об экзамене по астрономии, на котором какой-то студент далеко не блистал своими познаниями. Видя это, Пуанкаре задал ему совсем элементарный вопрос: «Сколько существует малых планет?» После некоторых колебаний экзаменующийся остановился на цифре 150. Пуанкаре, в ожидании ответа прохаживавшийся взад-вперед с руками, заложенными за спину, остановился и насмешливо изрек: «Должно быть, вы очень давно учили это».29 Экзамены ему приходилось принимать и на степень лиценциатта, и даже на бакалавра. Иностранный ученый, увидевший это, заметил: «Поистине французы пользуются бритвой, чтобы обтесать бревно».

Каждый новый учебный год Пуанкаре, почти не повторяясь, излагает новую дисциплину. Обучая студентов, он образовывал и себя. В его курсе математической физики, читавшемся с 1887 по 1896 год, охвачена вся современная ему теоретическая физика: термодинамика и кинетическая теория газов, электростатика, теория потенциала, теплопроводность, турбулентность, капиллярность, упругость и другие обширные разделы этой науки. В отличие от большинства своих коллег по университету Пуанкаре не стремится публиковать свои лекции. Лишь благодаря инициативе студентов они были тщательно переписаны, отредактированы и изданы. Порой автор добавлял к ним предисловие. Среди студентов, участвовавших в издании, были Шази, Драш, Бэр, Борель, ставшие впоследствии известными учеными. Чаще всего эти лекции являлись их первой публикацией. Около половины двенадцатитомного курса математической физики было посвящено оптике, электричеству, электромагнитной теории и электрическим колебаниям, то есть тому комплексу вопросов, на котором после Максвелла были сосредоточены интересы физиков.

«В эту эпоху на континенте еще не освоились с идеями Максвелла, и нужно было, так сказать, перебросить мост между старым и новым образами мышления» — так комментирует Пуанкаре свое обращение к теории великого английского физика. Электромагнитная теория Максвелла читается им начиная с 1888 года. Дважды эти лекции издавались отдельной книгой под названием «Электричество и оптика» — в 1890 и в 1901 году. Их автор не скрывает своих намерений «облегчить для некоторых умов изучение электрических теорий». Ибо, несмотря на свою математическую строгость, теория Максвелла с большим трудом находит признание среди физиков.

«Трактат по электричеству и магнетизму», в котором Джеймс Кларк Максвелл подвел итоги двухвековому развитию учения об электрических и магнитных явлениях, был издан в 1873 году. Современники называли его «библией электричества». Книга содержала более тысячи страниц, из которых лишь десяток относился непосредственно к знаменитым уравнениям. Сами уравнения были разбросаны по разным частям, и было их довольно много — двенадцать. По характеру изложения «Трактат» был крайне сложным и неудобочитаемым, что затрудняло усвоение развиваемых там идей. Особенно раздражал он французских ученых, воспитанных на трудах своих великих предшественников, начиная с Лапласа и кончая Коши. Когда «читатель впервые открывает книгу Максвелла, к его восхищению примешивается чувство беспокойства, а подчас даже и недоверия, — пишет Пуанкаре во введении к своим лекциям „Электричество и оптика“. — Только после глубокого знакомства и ценой больших усилий удается рассеять это чувство. Впрочем, у некоторых выдающихся умов оно так и осталось навсегда».

Многие ученые, столкнувшись с теорией Максвелла, оказывались в роли того анекдотичного персонажа, который, прослушав лекцию об устройстве и принципе действия телефона, заявил, что ему все понятно, за исключением того, как голос передается по проводам. Пуанкаре приводит высказывание одного своего коллеги, глубоко изучавшего труд Максвелла: «Я все понимаю в его книге, за исключением того, что такое наэлектризованный шар». Знаменитый голландский физик Г. А. Лоренц, которому суждено было впоследствии развить и продолжить эту электромагнитную теорию, познакомившись в молодости с уравнениями Максвелла, не смог понять их физического смысла и обратился за разъяснениями к переводчику сочинений Максвелла. Но переводчик заявил, что теория Максвелла — чистая математика, не имеющая никакого физического содержания.

С трудностями объяснения новой физической теории столкнулись и те немногие ученые, которые пытались распространить ее идеи с университетских кафедр. В Америке теорию Максвелла пропагандировал профессор Йельского университета Дж. У. Гиббс, один из основоположников статистической механики. Среди европейских ученых следует отметить Л. Больцмана, который окрестил «Трактат» книгой «за семью печатями». Пуанкаре одним из первых разобрался в многосложном изложении Максвелла. Его правильная и стройная интерпретация идей английского ученого помогла рассеять невразумительную путаницу у комментаторов этой теории. В своих лекциях Пуанкаре проводит глубокий анализ различных попыток теоретического обобщения экспериментально установленных законов электричества и магнетизма. Он подробно разбирает электродинамику Ампера, устанавливает ее связь с теоретическим подходом Гельмгольца и постепенно подводит слушателей к выводу о преимуществах уравнений Максвелла, наиболее полно охватывающих электромагнитные процессы и предсказывающих неизвестные еще физике явления.

Важнейшее предсказание было подтверждено в 1888 году немецким физиком Генрихом Герцем, соединявшим в себе черты блестящего экспериментатора и глубокого теоретика. Ему удалось получить и обнаружить электромагнитные волны, существование которых предвещала теория Максвелла. Однако измеренная им скорость распространения этих волн оказалась на 40 процентов меньше предполагавшейся величины — скорости света. Подтверждая общий вывод теории, опыт Герца ставил под сомнение заключение об электромагнитной природе света.

Пуанкаре в этом году только еще приступил к своим лекциям по теории Максвелла. Но все перипетии ее развития живо интересуют его ум и обсуждаются им на самом высоком профессиональном уровне. Внимательно просмотрев теоретические выкладки Герца, он находит у него ошибку в расчетах колебаний генератора. «Это исправление было легким, — скажет он впоследствии, — но важно было сделать его быстро, так как в тот момент, если бы эта ошибка осталась незамеченной, она могла задержать научный прогресс». Исправленная величина скорости распространения электрических колебаний практически совпала со скоростью света. Эксперимент оправдал обобщение электромагнитной теории на оптические явления.

Вопрос о герцевских колебаниях вновь осложнился после обнаружения швейцарскими учеными множественного электрического резонанса, казавшегося довольно парадоксальным. И вновь вмешательство Пуанкаре приносит решение проблемы. Отвергнув доводы авторов, он объяснил это явление быстрым затуханием колебаний во времени. По этому поводу Герц писал Пуанкаре: «Их (экспериментаторов) объяснение мне совершенно не нравится. Мой взгляд положительно близок к Вашему, может быть, даже совсем тождествен». Проведенная затем экспериментальная проверка подтвердила данное Пуанкаре истолкование.

Экспериментальные исследования по электромагнетизму занимают Пуанкаре ничуть не меньше, чем теоретические выводы и заключения. Все наиболее значительные опыты того времени проходят при явном или неявном соучастии и сопереживании знаменитого французского теоретика. Внимание его однажды привлекают попытки обнаружить магнитное поле конвекционных токов, то есть токов, обусловленных перемещением наэлектризованных тел. Еще Фарадей утверждал, что при движении наэлектризованного шара должны наблюдаться точно такие же эффекты, как и при прохождении электрического тока в неподвижном проводнике. В 1876 году американский физик Роуланд действительно показал наличие у конвекционного тока магнитного поля. Французский исследователь Кремье повторил опыт Роуланда, но уже по усовершенствованной схеме — с переменным электрическим зарядом. Никакого магнитного поля он не обнаружил. Через год Пандер, ученик Роуланда, воспроизводит опыты Кремье и вновь подтверждает результат американского ученого. Возникла противоречивая ситуация, требовавшая немедленного разрешения.

Пуанкаре внимательно следил за опытами Кремье, работавшего в Сорбонне, давал советы по постановке экспериментов и даже опубликовал несколько заметок, посвященных их обсуждению. Подчеркивая фундаментальный характер результата, полученного Роуландом, и, в частности, связь его с законом сохранения энергии, он убедил Кремье поставить в Сорбонне опыт вместе с Пандером. Первое сообщение о результатах этого совместного исследования, свидетельствовавших о наличии магнитного поля, сделал сам Пуанкаре в своей книге «Наука и гипотеза».

Даже после того, как опыты Герца доказали наличие электромагнитных волн, предсказанных теорией Максвелла, учение английского физика не получило широкого распространения. Главная причина его невосприятия заключалась, конечно, не в неудачной форме изложения автором своего творения, а в необычности предложенных им идей. Для осознания теории требовалось выйти за пределы уже сложившихся в физике понятий и представлений. Максвелл отверг прежние взгляды о выведении всего многообразия электромагнитных явлений только из взаимодействия зарядов. Он вводит новое физическое понятие — электромагнитное поле, которое было лишь косвенно связано с измеряемыми физическими величинами. В общепринятом тогда понимании теория Максвелла только описывала электромагнитные явления на строгом математическом языке, но не давала их объяснения. Объяснить — значило, по мнению физиков того времени, построить механическую модель явления. Механика представлялась незыблемым фундаментом всех разделов физики. За два столетия это превратилось уже в своеобразную теоретико-познавательную догму, требованиям которой пытались подчинить развитие всякой физической теории. Поэтому большинство ученых считало, что для завершения электромагнитной теории необходимо еще открыть механическую интерпретацию уравнений Максвелла. В плену этого предвзятого представления находились все физики. Не избежал этого заблуждения и сам автор электромагнитной теории.

В первых своих работах по электромагнетизму Максвелл основное внимание отводил именно механическим моделям. Подчеркивая непривлекательность одного из предложенных им объяснений, Пуанкаре писал: «Можно было подумать, что читаешь описание завода с целой системой зубчатых колес, рычагами, передающими движение и сгибающимися от усилия, центробежными регуляторами и передаточными ремнями». Однако позднее Максвелл меняет свою точку зрения. В работе «О динамической теории электромагнитного поля» он выражает желание «просто направить внимание читателя на механические явления, которые помогут ему в понимании электрических явлений. Все подобные фразы в настоящей статье должны пониматься как иллюстративные, а не объяснительные». Но электромагнитную энергию Максвелл по-прежнему трактует как механическую энергию. Не отказавшись от идеи механического истолкования электрических явлений, он убеждается тем не менее в принципиальной невозможности предпочесть одну какую-либо конкретную механическую модель. Эту мысль Максвелл образно поясняет на примере церковного перезвона: если заданы только движения канатов, то по звону колоколов нельзя однозначно определить механические связи между канатами и колоколами.

В своем курсе Пуанкаре рассматривает вопрос гораздо шире: каково соотношение между механикой и электродинамикой вообще? Уже около двух десятилетий проблема эта занимает умы крупнейших ученых. Решение ее могло быть получено еще в семидесятые годы, так как для этого не требовалось каких-либо новых экспериментальных данных или новых теоретических обобщений. Необходим был лишь трезвый и глубокий анализ двух теоретических схем описания физических явлений, принятых в механике и в электродинамике. И тот факт, что правильное освещение было дано лишь в работах Пуанкаре, красноречиво свидетельствует о том, какое редкое сочетание представляли его склонность к обобщению и его умение проникать в самую суть исследуемой проблемы.

Анализируя вопрос о правомерности сведения законов электродинамики к механической модели, Пуанкаре получает совершенно неожиданный ответ: вопрос этот снимается не в силу того, что он не имеет решения, а ввиду бесчисленного множества всевозможных решений. К этому выводу он приходит, приняв во внимание аналогию между уравнениями электродинамики и уравнениями Лагранжа, дающими наиболее общее описание объектов классической механики. Чтобы совместить эти уравнения по форме, достаточно было наложить на кинетическую и потенциальную энергии некоторые общие ограничения, которым удовлетворяет великое множество конкретных механических моделей. Пуанкаре подчеркивает, что утверждение о неоднозначности механической интерпретации уравнений электродинамики содержится в самом трактате Максвелла. «Максвелл не дает механического обоснования электричества и магнетизма, — пишет он во введении к книге „Электричество и оптика“, — он ограничивается тем, что доказывает возможность такого объяснения… Но основная идея книги затемнена, и притом настолько, что в большинстве популярных изложений она оказывается единственным пунктом, оставшимся без рассмотрения». Видимо, поэтому разрешение вопроса о неоднозначности механической интерпретации многие связывали только с именем Пуанкаре, который одним из первых увидел в теории Максвелла столь же самостоятельную и фундаментальную физическую теорию, как и механика Ньютона.

Признание двойственной природы физической реальности было самым глубоким и в то же время самым общим преобразованием ученой мысли со времени Ньютона. Механическое мировоззрение потеряло свою монополию. Принципы построения каждой из этих физических теорий, по мнению Пуанкаре, должны быть совместимы друг с другом. В противном случае теория, объясняющая одну область физических явлений, неминуемо войдет в противоречие с фактами, соответствующими другой области явлений. Так и произошло на самом деле. Нарушение соответствия между механикой и электродинамикой стало причиной глубокого кризиса физики.







Достарыңызбен бөлісу:
1   ...   10   11   12   13   14   15   16   17   ...   30


©netref.ru 2019
әкімшілігінің қараңыз

    Басты бет