Общие сведения о крышах



жүктеу 1.1 Mb.
бет1/7
Дата02.05.2016
өлшемі1.1 Mb.
  1   2   3   4   5   6   7
: Inst -> Study
Inst -> Общественные науки
Inst -> Инструкция по применению учреждение-разработчик: гу «Республиканский научно-практический центр «Кардиология»
Inst -> Инструкция по эксплуатации Устройство для пред-стерилизационной смазки наконечников (lub 909)
Inst -> Русский авангард Понятие авангардизм. И его отличия от модернизма
Inst -> Инструкция по применению Учреждение разработчик: гуо «Белорусская медицинская академия последипломного образования»
Inst -> Инструкция Центрального Банка РФ по вопросу поддельных монет
Inst -> Міністерство екології та природних ресурсів україни департамент геодезії, картографії та кадастру
Study -> Конкурентные преимущества ООО «Арсенал-Центр» и ООО «Арсенал» Одесса перед «тпк» г. Яворив Львовской области: 1
Study -> Конкурентное преимущество ООО «Арсенал» и ООО «Арсенал-Центр»
Общие сведения о крышах

В зависимости от уклона скатов крыши бывают скатные (больше 10%) и плоские (до 2,5%). В индивидуальном жилищном строительстве, как правило, используются скатные и пологоскатные крыши. В плоских крышах возможно образование застоя воды на кровле и, как следствие, появление в этих местах протечек. Достоинством плоских крыш является возможность использования их для различных целей. По конструктивному решению крыши могут быть чердачными (раздельными) и бесчердачными (совмещенными). Чердачные крыши бывают утепленные или холодные. В бесчердачных (совмещенных) крышах несущие элементы служат перекрытием верхнего этажа здания. Бесчердачные крыши бывают вентилируемыми, частично вентилируемыми и невентилируемыми. По условиям эксплуатации крыши бывают эксплуатируемыми и неэксплуатируемыми. Тип крыши в основном определяется ее геометрической формой и материалом кровли. В зависимости от формы крыши могут быть односкатными, двускатными, трех-, четырехскатными, многоскатными (рис. 2).






Рис. 2. Основные типы крыши.

Односкатная крыша (рис. 2, а) своей плоскостью (скатом) опирается на несущие стены, имеющие разную высоту. Эта крыша больше всего подходит для строительства хозяйственных построек.

Двускатная крыша (рис. 2, б, в) состоит из двух плоскостей-скатов, опирающихся на несущие стены одинаковой высоты. Пространство между скатами, имеющее треугольную форму, называется щипцами или фронтонами. Разновидностью двускатной крыши является мансарда.

Если крыша состоит из четырех треугольных скатов, сходящихся в одной верхней точке, то она носит название шатровой (рис. 2, г).

Крыша, образованная двумя трапецеидальными скатами и двумя торцевыми треугольными называется вальмовой четырехскатной (рис. 2, д). Бывают и двускатные вальмовые (полувальмовые), когда фронтоны срезаны (рис. 2, е).

Двускатная крыша производственного здания с продольным фонарем (рис. 2, ж) отличается от двускатной крыши жилого здания меньшим наклоном скатов и большей шириной и длиной.

Сводчатая крыша (рис. 2, з) в поперечном сечении может быть очерчена дугой окружности или иной геометрической кривой.

Складчатая крыша (рис. 2, и) образуется от соединения отдельных трапецеидальных элементов — складок.

Куполообразная крыша (рис. 2, к) по очертанию представляет собой половину шара со сплошным опиранием на цилиндрическую стену.

Многощипцовая крыша (рис. 2, м) образуется от соединения скатов плоскостей.

Крестовый свод представляет собой четыре сомкнутых арочных свода (рис. 2, л).

Сферическая оболочка (рис. 2, о) по очертанию представляет собой свод, опирающийся в нескольких точках на основание. Пространство между опорами обычно используют для устройства светопрозрачных фонарей.

Шпилеобразная крыша (рис. 2, н) состоит из нескольких крутых треугольников-скатов, соединяющихся в вершине.

Крыша из косых поверхностей (рис. 2, п) состоит из нескольких пологих плоскостей, опирающихся на несущие стены, стоящие на разных уровнях.

Плоская крыша (рис. 2, р) опирается на несущие стены, имеющие одинаковую высоту.

В индивидуальном строительстве, как правило применяются крыши, показанные на рис. 2, а, б, в, г, д, е. Пересечения скатов крыши образуют двугранные углы. Если они обращены книзу, их называют разжелобами, или ендовами, если кверху, то ребрами. Верхнее ребро, расположенное горизонтально, называют коньком, а нижнюю часть ската — свесом.

Для удаления дождевой и талой воды устраивают наружные водосточные трубы, по которым вода сбрасывается в определенное место и по водоотводным канавам уходит с участка в уличные канавы. Величина уклона ската и долговечность крыши зависят от материала кровли, а также от климатических условий (табл. 1).

Таблица 1. Уклоны скатных крыш и их долговечность



Материал кровли

Уклон

Срок службы, год

Асбестоцементные плоские листы, плитки

1:2

40...50

Волнистые асбестоцементные листы

1:3

40...50

Глиняная черепица

1:1...1:2

60 и более

Кровельная листовая сталь черная

1:3,5

20...25

То же, оцинкованная

1:3,5

30...40

Рулонные материалы двухслойные, на мастике

1:7

5...8

Рубероидные по пергамину

1:2

3...5

Деревянная дранка

1:1,25

5...10

Скатные чердачные крыши должны эксплуатироваться в условиях исправного состояния кровли, несущих конструкций крыш, нормального температурно-влажностного режима в чердачных помещениях и своевременного проведения ремонта покрытия.


Классификация крыш

Чердачные скатные крыши. Крыша чердачная скатная состоит из несущих конструкций и кровли. Между такой крышей и чердачным перекрытием находится чердак, используемый для размещения вентиляционных каналов (коробок), разводов трубопроводов и т.д. При значительных уклонах чердачные пространства нередко используются для встроенных в них помещений. Высота чердака в самых низких местах, например у наружных стен, должна быть не менее 0,4 м для возможности периодического осмотра конструкций. В чердак зимой через чердачные перекрытия из помещений верхнего этажа проникают тепло и влага. Чем теплее чердак и чем теплопроводнее материал кровли, тем больше образуется конденсата (инея). При повышении наружной температуры конденсат тает, вызывая загнивание деревянных конструкций и коррозию металлических элементов. Увлажнение чердака может происходить также в результате проницания влажного воздуха из лестничных клеток, в связи с чем важное значение приобретает плотность притвора дверей и люков, ведущих на чердак. Весьма важным и эффективным мероприятием против увлажнения чердачного пространства является его проветривание. Для этого устраивают вентиляционные отверстия под карнизом (приточные отверстия) и в коньке (вытяжные отверстия), а также слуховые окна. Несущая часть состоит из стропил, ферм, прогонов, панелей и других элементов. Несущие конструкции скатных крыш могут быть выполнены из железобетона, стали, дерева в виде стропил, строительных ферм и крупных панелей. Выбор конструкции крыши зависит от величины перекрываемых пролетов, уклона крыши, а также требований долговечности, огнестойкости и теплотехнических свойств (рис. 3).




Рис. 3. Односкатная крыша на ребристых панелях:
1 - ригель каркаса (балки, фермы); 2 - несущий элемент покрытия; 3 - пароизоляция; 4 - утеплитель; 5 - стяжка; 6 - кровля; 7 - защитный слой.

Наибольшее распространение получили наслонные и висячие стропила. Насланные стропила (рис. 4) состоят из стропильных ног, подкосов и стоек. Они опираются нижними концами стропильных ног на подстропильные брусья — мауэрлаты, а верхними — на горизонтальный брус, называемый верхним коньковым прогоном. Роль мауэрлатов заключается в том, чтобы создать удобную опору для нижних концов стропил. Верхний прогон поддерживается стойками, устанавливаемыми на внутренние опоры. Расстояние между стойками, несущими коньковые прогоны, принимают равным 3...5 м.






Рис. 4. Наслонные стропила:
а-г - для односкатных крыш; д, е - для двускатных крыш; ж - план устройства стропил; 1 - стропильная нога; 2 - стойка; 3 - подкос; 4 - подстропильный брус; 5 - ригель; 6 - распорка; 7 - верхний прогон; 8 - лежень; 9 - диагональная нога; 10 - короткая стропильная нога.

Для увеличения продольной жесткости конструкций стропил ставят продольные подкосы, расположенные у каждой стойки. Если в здании имеются два ряда внутренних опор в виде продольных капитальных стен или столбов, колонн и других элементов, то укладывают два продольных прогона. Наслонные стропила применяют в зданиях при наличии промежуточных опор и пролетов размером до 16 м.

В последнее время получили распространение сборные деревянные наслонные стропила, заранее изготовленные на заводе. Комплект таких стропил состоит из отдельных конструктивных элементов и имеет сокращенное название — стропильный щит, стропильная ферма. Возможно такое устройство наслонных стропил из сборного железобетона. Стропильные фермы применяют при устройстве крыш для зданий значительной ширины, не имеющих внутренних опор. Строительная ферма состоит из двух стропильных ног, соединенных затяжкой, которые воспринимают горизонтальную составляющую передаваемых на опору усилий (распор). При пролетах ферм 6 м и более врезают ригель, а при пролете до 12 м устанавливают бабку и подкосы, повышающие жесткость и уменьшающие прогиб стропильных ног (рис. 5).




Рис. 5. Стропильные фермы для двускатных крыш:
а - пролеты ферм 6 м и более; б - то же, 12 м; 1 - ригель; 2 - шпала; 3 - подкос; 4 - колодка; 5 - балки; 6 - затяжка; 7 - бабка; 8 - подкос.

Стропильные фермы для малоэтажного гражданского и сельского строительства изготавливают из брусьев и досок. Иногда элементы, воспринимающие растягивающие усилия в нижнем поясе или стойках, выполняют из стали. Такие фермы называют металлодеревянными. При четырехскатных или более сложных формах крыш вводятся диагональные накосные стропильные ноги, образующие скаты треугольной формы в плане, так называемые вальмы.

Наслонные стропила выполняют из брусьев, досок и бревен (см. рис. 4). Шаг стропил принимают в зависимости от материала, из которого они изготовлены, типа кровли и сечения элементов обрешетки. При изготовлении стропил из брусьев толщиной 180...200 мм их ставят через 1,5...2 м, а из пластин и досок — через 1...1,5 м. В зданиях значительной ширины, когда длина стропильных ног достигает 8 м, необходимо устраивать промежуточные опоры на внутренних стенах. По этим стенам укладывают лежни, на них устанавливают стойки и подкосы, а затем устанавливают прогон, на который опираются стропильные ноги.

В местах пересечения скатов крыши наслонные стропила делают из диагональных и коротких стропильных ног (см. рас.4, ж). Для предохранения крыши от сноса ветром часть стропильных ног привязывают к костылям, вбитым в наружные стены, скрутками из проволоки. Все сопряжения стропил крепят гвоздями, болтами, скобами. Наслонные системы из железобетона состоят из железобетонных панелей, опертых вверху на коньковый железобетонный прогон, а внизу на наружные стены здания. Коньковый прогон поддерживается столбами, установленными через 4...6 м. Крупные панели из железобетона применяют для односкатных и двускатных крыш. Односкатные крыши устраивают на ребристых панелях размером 6,4х1,2 м, укладываемых с уклоном 5%, двускатные крыши — с уклоном 7...8%.

В настоящее время для изготовления оснований из железобетона могут быть использованы сложные многокомпонентные вяжущие. Перед укладкой кровли по панелям устраивается цементная или асфальтовая стяжка. При отсутствии промежуточных опор в малых пролетах зданий до 12 м применяют висячие стропила (рис. 6). Их изготавливают из тех же материалов, что и наслонные стропила, т. е. из брусьев, досок и бревен. Висячие стропила состоят из стропильных ног и затяжек. Верхние концы стропильных ног соединяют прорезным шипом, а нижние врубают лобовой врубкой в затяжку и крепят болтами.




Рис. 6. Деревянные висячие стропила:
1 - затяжка; 2 - подвеска, или бабка; 3 - стропильная нога; 4 - подвесное чердачное перекрытие; 5 - подкос; 6 - аварийный болт; 7 - гвозди; 8 - покрытие кровли; 9 - две накладки; 10 - болты; 11 - болтовые нагели.



Бесчердачные крыши. Бесчердачные крыши подразделяются па невентилируемые, частично вентилируемые и вентилируемые наружным воздухом. Невентилируемые крыши применяют в тех случаях, когда исключается накопление влаги в покрытии в период эксплуатации. Такие покрытия могут выполняться с теплоизоляцией, совмещенной с несущей конструкцией. Основными элементами совмещенной крыши являются настил, утеплитель, пароизоляция и кровля (рис. 7).




Рис. 7. Совмещенные крыши:
а, б - невентилируемая; в - вентилируемая; 1 - защитный слой; 2 - рулонный ковер; 3 - стяжка; 4 - термоизоляция; 5 - пароизоляция; 6 - вентилируемый канал; 7 - несущая конструкция; 8 - отделочный слой.

Настил устраивают из железобетонных крупноразмерных плит различного вида. Пароизоляционный слой в виде одного или двух слоев рубероида или пергамина на мастике предусматривают для защиты теплоизоляции от увлажнения водяными парами, проникающими со стороны внутренних помещений. В качестве утеплителя применяют плитные и сыпучие теплоизоляционные материалы. Поверх теплоизоляции делают выравнивающий слой (стяжку) из цементного раствора. По стяжке устраивают кровлю. Ее выполняют из рулонных кровельных материалов в несколько слоев. Наклеивают их на холодную или горячую мастику. Для защиты гидроизоляционного ковра от повреждений делают защитный слой в виде насыпок из песка или мелкозернистого гравия, втопленного в верхний слой мастики, или слоя рубероида.

Невентилируемые крыши монтируются из сплошных или многослойных панелей. Изготовляемые в заводских условиях такие панели герметизируются наклейкой по верхней поверхности гидроизоляционного ковра, а снизу и по контуру панели — нанесением слоя окрасочной пароизоляции. Частично вентилируемые крыши имеют в материале панели поры или каналы, расположенные в верхней толще панели. Вентилируемые крыши имеют сплошные воздушные прослойки, осушающие покрытие зимой и предохраняющие его от перегрева солнечными лучами летом. Высота воздушной прослойки 200...240 мм. Конструкция совмещенной крыши состоит из нескольких слоев материалов (см. рис. 7):

несущий элемент, например, железобетонная плита, которую снизу отделывают под потолок помещения верхнего этажа;

пароизоляция из одного или двух слоев рубероида на мастике;

утеплитель — плиты ячеистого бетона или засыпка из керамзита, шлака и подобных высокопористых материалов;

кровля из рулонного материала, выполняемая из рубероида, толя и т.п.;

защитный слой, выполняемый из мелкого гравия или просеянного шлака, втопленного в окрасочный слой битума.

При невентилируемой крыше по утеплителю устраивают стяжку из цемента. Если крыша невентилируемая, стяжка по утеплителю выполняется из цементного раствора. Ограждение крыш состоит из стоек и подкосов и имеет вид поставленной вертикально стальной решетки. Стойки и подкосы имеют внизу отгибы — лапки, которыми они опираются на крышу. Крепление ограждений производится глухарями, забиваемыми в обрешетку кровли через отверстия в лапках стоек и подкосов. Парапеты устраиваются в виде сплошной каменной стены с отверстиями у мест расположения водосточных труб.

Водоотводы. Отвод воды с кровель чердачных крыш (дождевой и талой) бывает неорганизованным и организованным. При неорганизованном водоотводе вода стекает с кровли на всем ее протяжении. Такой водоотвод допускается лишь в малоэтажных домах при условии, что стекающая вода не попадает на тротуары. При организованном водоотводе вода, стекающая с кровли, по желобам отводится к наружным водосточным трубам. Различают три вида желобов: настенные, подвесные и выносные (рис. 8).




Рис. 8. Устройство водостока со скатных крыш:
а - настенный желоб; б - железобетонный карниз-желоб; в - сливной карниз с подвесным желобом (1 - кровля; 2 - настенный желоб; 3 - крюк; 4 - воронка; 5 - водосточная труба; 6 - подвесной желоб; 7 - оклеечная гидроизоляция; 8 - кровельная сталь; 9 - глухарь; 10 - стойка перил с подкосом; 11 - ограждающие стержни, или полосы); г - воронка внутреннего водостока (1 - чаша воронки; 2 - прижимное кольцо; 3 - крышка; 4 - крепежный винт; 5 - стеклопласт; 6 - асбестоцементная труба; 7 - утеплитель; 8 - эластичная прокладка; 9 - фланец; 10 - прижимной винт).

Водосточные трубы изготовляются из кровельной стали толщиной 0,5...0,6 мм и состоят из верхней воронки и трубы, составленной из отдельных звеньев и имеющей перегибы вверху у воронки и внизу у отмета. Трубы изготавливают диаметром 105, 140 и 215 мм. Диаметр верхней части воронки должен в 2...2,5 раза превышать диаметр трубы. Крепление водосточных труб к стенам производится при помощи ухватов, располагаемых на высоте через 1...1,5 м и прочно заделанных в стены. При внутренних водостоках на крыше устанавливаются специальные водоприемные воронки, соединенные с чугунными стояками, проходящими внутри здания и отводящими воду в подземную ливневую сеть или канализацию.

Чугунная воронка внутреннего водостока состоит из чаши воронки, прижимного кольца, колпака или крыши, закрепляющего устройства (см. рис. 8). Водоприемные воронки устанавливают в ендовах. Расположенные внутри здания трубы отводят атмосферную воду в ливневую канализацию. Расстояние между воронками зависит от длины ската. Площадь кровли, приходящаяся на одну воронку, не должна превышать 800...1200 м2. Необходимые продольные уклоны для стока воды к воронкам в ендовах создаются за счет переменной толщины укладываемого в них слоя легкого бетона. Продольный уклон должен быть не менее 1°. Водоприемные воронки внутренних водостоков делают из чугуна. Воронка состоит из трех основных частей: патрубка, входящего в верхний конец и заделанного в конструкцию покрытия, корпуса с отверстиями для приема стекающей с кровли воды и крышки или колпака с отверстиями. Каждую воронку присоединяют к трубе (стояку) диаметром не менее 100 мм. В местах установки воронки в покрытии предусматривают отверстия размером 400х400 мм, в которое вставляют чашеобразный чугунный поддон с отверстием для патрубка воронки. При установке патрубка в поддон участки между его стенками и воронкой заливают горячей битумной мастикой. Внутреннюю поверхность поддона оклеивают стеклотканью или мешковиной, пропитанной битумом, и заводят в нее края кровли. Корпус воронки устанавливают в патрубке поверх кровли и в нижней части также заливают битумом.
Конструкция крыш

Материалы, предназначенные для кровли, должны быть не только прочными, но и долговечными, т.е. обладать атмосферостойкостью, теплостойкостью, водостойкостью, коррозионной стойкостью, водонепроницаемостью. Для создания нормальных условий эксплуатации здания большое значение имеет выбор вида кровли в зависимости от уклона крыши, районов строительства и воздействий на кровлю, например, снега, дождя, ветра, солнечной радиации, температуры воздуха. Особое место занимают качество кровельных материалов и способы выполнения работ по устройству кровель, соблюдение правил эксплуатации. Рациональное использование кровельных материалов с выполнением вышеуказанных требований возможно при глубоком знании их свойств, способов получения, правил хранения и транспортировки, а также условий их работы в конструкциях и сооружениях. Свойства кровельных материалов можно разделить на несколько групп: физические; гидрофизические; теплотехнические; механические; химические, биологические; особые свойства.



Основные свойства кровельных материалов

Плотность — величина, численно равная массе единицы объема вещества, г/см3, кг/м3, т/м3. Величина плотности кровельных материалов будет зависеть от материала, из которого они сделаны.

Средняя плотность — отношение массы материала к его объему в естественном состоянии, т.е. с порами и пустотами. Величина средней плотности исчисляется в г/см3, кг/м3, т/м3. Средняя плотность не является величиной постоянной, так как она меняется в зависимости от пористости материала. Искусственные материалы, а таковыми являются большинство кровельных материалов, можно получать с заданной необходимой средней плотностью. В табл. 2 приведены плотность и средняя плотность строительных материалов, применяемых для устройства кровель различного типа.

Таблица 2. Плотность, средняя плотность и пористость кровельных материалов.



Материал

Плотность, кг/м3

Средняя плотность, кг/3

Пористость, П, %

Тяжелый бетон

2500...2900

1800...2500

10

Сталь

7860

7860

---

Черепица

2500...2600

2000...2100

2

Стеклопластик

2000

2000

---

Битум

850...1000

850...1000

1

1120...1230

 

 

Асбестоцементные листы

---

1600

---

Плотный известняк

2600...2800

1800...2600

---

Доломит

2500...2900

2200...2800

---

Древесина

1540

400...990

67

Полиэтилен

970

970

---

Мипора

1400...1500

400...1000

98

Стекло

2650

2650

---

Деготь

1230

850...1000

---

Относительная плотность выражает плотность материала по отношению к плотности воды (это величина безразмерная).

Строительные материалы по структуре своей пористые, исключение составляют немногие из них, например металлы, стекло, мономинералы.

Пористость материалов обычно колеблется в широких пределах — от 0 до 98 %. Для кровельных материалов диапазон величины пористости намного ниже (см. табл. 2). Важное значение для них имеет не абсолютная величина пористости, а соотношение открытых и закрытых пор. Открытые поры сообщаются с окружающей средой и могут сообщаться между собой, поэтому они заполняются водой при обычных условиях насыщения. Открытые поры увеличивают проницаемость и водопоглощение материала и ухудшают его морозостойкость, что совершенно недопустимо для кровельных материалов.

Пористый материал обычно содержит и открытые, и закрытые поры; увеличение закрытой пористости за счет открытой повышает его долговечность. Все свойства материала определяются его составом и строением и прежде всего величиной и характером пористости.
Физические свойства

Гигроскопичность — свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха. Поглощение влаги из воздуха объясняется адсорбцией водяного пара на внутренней поверхности пор и капиллярной конденсацией. Этот процесс, называемый сорбцией, обратимый. Волокнистые материалы со значительной пористостью, например теплоизоляционные и стеновые, обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью. У кровельных материалов, наоборот, сорбционная способность низкая из-за малой внутренней поверхности пор.

Водопоглощение — способность материала поглощать и удерживать воду. Водопоглощение характеризует в основном открытую пористость, так как вода не проходит в закрытые поры. Поэтому все кровельные материалы имеют незначительную величину водопоглощения. Водопоглощение отрицательно влияет на основные свойства кровельных материалов: увеличивается относительная плотность, материал набухает, прочность и морозостойкость снижаются.

Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью. Водостойкость численно характеризуется коэффициентом размягчения Кразм, который характеризует степень снижения прочности в результате его насыщения водой.

Водопроницаемость — способность материала пропускать воду под давлением. Степень водопроницаемости зависит от пористости материала, формы и размеров пор. Чем больше в материале замкнутых пор и пустот, тем меньше его водопроницаемость. В силу своего структурного строения кровельные материалы должны иметь низкую водопроницаемость, так как относятся к плотным материалам с относительной плотностью, близкой к единице. Стекло, сталь, полиэтилен, битум и др., практически водонепроницаемы. Водонепроницаемость рулонных кровельных материалов определяется по времени, в течение которого образцы не пропускают воду при постоянном гидростатическом давлении.

Влажность — это степень содержания влаги в материале. Зависит от влажности окружающей среды, свойств и структуры самого материала. Так как кровельные материалы приближаются к абсолютно плотным материалам, количество воды, содержащееся в них, незначительно. Поэтому показатель влажности у кровельных материалов приближается к нулю.

Морозостойкость — способность материала в насыщенном водой состоянии выдержать требуемое число циклов попеременного замораживания и оттаивания. В зависимости от числа циклов попеременного замораживания, которые выдержал материал, устанавливается его марка по морозостойкости. Благодаря высокой плотности и низкому водопоглощению кровельные материалы имеют высокую морозостойкость.
Гидрофизические свойства

Строительные материалы, используемые для ограждающих конструкций, каковыми являются крыши зданий с их верхней оболочкой, называемой кровлей должны быть не только прочными и долговечными, но и обладать надлежащими теплотехническими свойствами, например, теплопроводностью, теплоемкостью огнестойкостью, огнеупорностью, термической стойкостью. Теплопроводность — способность материала передавать теплоту через свою толщу при наличии разности температур по обе стороны материала. Теплопроводность зависит от вида материала, пористости, характера пор, его влажности и плотности, а также от средней температуры, при которой происходит передача теплоты. Значение теплопроводности характеризуется коэффициентом теплопроводности. Коэффициент теплопроводности также зависит от средней плотности и химико-минерального состава материала, его структуры, пористости и характера пор, средней температуры материала, влажности. С увеличением влажности материала коэффициент теплопроводности резко возрастает, так как снижаются показатели теплоизоляционных свойств материала (рис. 9).





Рис. 9. Зависимость теплопроводности неорганических материалов от плотности:
1 - материалы, насыщенные водой; 2, 3 - воздушно-сухие материалы с разной влажностью; 4 - сухие материалы.

При замерзании строительные материалы полностью теряют свойство теплоизолировать, поэтому необходимо их защищать от мороза. Ввиду того, что кровельные материалы имеют плотную структуру и не применяются на границе разных температур, теплопроводность у них значительная. При необходимости теплоизоляции в покрытиях крыш устраиваются теплоизоляционные слои.

Огнестойкость — способность материала выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называется время в часах от начала огневого испытания до появления одного из следующих признаков: сквозных трещин, обрушения, повышения температуры на необогреваемой поверхности. По огнестойкости строительные материалы, в том числе и кровельные, делятся на три группы: несгораемые, трудносгораемые, сгораемые. Несгораемые материалы под действием высокой температуры или огня не тлеют и не обугливаются, примером может служить черепица; трудносгораемые материалы с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии огня, например, кровельная сталь; сгораемые материалы воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня, например дерево, толь, рубероид, стеклопластик.

Огнеупорность — способность материала противостоять длительному воздействию высоких температур, не деформируясь и не расплавляясь. По степени огнеупорности материалы подразделяются на огнеупорные, которые выдерживают действие температур от 1580 °С и выше; тугоплавкие, которые выдерживают температуру 1360... 1580°C; легкоплавкие, выдерживающие температуру ниже 1350 °С.

Теплостойкость или температуроустойчивость — способность материала сохранять форму, не стекать и не сползать с поверхности конструкции под определенным уклоном и при определенной температуре. Она зависит в основном от физико-механических свойств и структуры материала, вида и количества заполнителя. Это свойство очень важно для органических вяжущих веществ, таких, как битумы, дегти, пластмассы, которые при температуре выше температуры теплостойкости теряют свои вязкие свойства и перестают выполнять роль вяжущего. Например, теплостойкость битумной изоляции толщиной 4 мм составляет 70-90 °С, битумно-найритовой толщиной 4 мм — 100°С, битумно-латексной эмульсии толщиной 6 мм — 70 °С. Температура размягчения характеризует только битумные и дегтевые вяжущие вещества. Это условный показатель, характеризующий изменение вязкости вяжущих веществ при повышении температуры. Например, температура размягчения нефтяных строительных битумов 50...70°С; битумов нефтяных кровельных — 40...95 °С: битумов нефтяных дорожных улучшенных — 35...51 °С. Температура размягчения дегтей высоких марок обычно ниже, чем тугоплавких битумов, а именно, 40...70°С. Поэтому тугоплавкие битумы применяются для устройства покровного слоя кровельных гидроизоляционных материалов.

Температура вспышки свойственна маслам и нефтепродуктам. Температура, при которой пары нефтепродуктов, нагретых в открытом тигле, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ним пламени, считается температурой вспышки. Температура вспышки нефтяных битумов, применяемых для кровельных материалов, 240...300°С в зависимости от битума. Минимальная температура самовоспламенения 300 °С.

Коэффициент линейного температурного расширения (ТКЛР) характеризует свойство материала изменять размеры при нагревании. Только некоторые строительные материалы при этом не расширяются. ТКЛР равен относительному удлинению материала при нагревании на один градус. У каждого материала эта величина постоянная. Например, у стали -- (11...11,9)*10-6, у бетона (10...14)*10-6°С-1, гранита — 10*10-6°С-1, дерева вдоль волокон (3...5) *10-6, у полимерных материалов в 10...20 раз больше. Во избежание растрескивания сооружения большой протяженности разрезают деформационными швами, назначаемыми с учетом термического расширения материалов. При устройстве мягкой рулонной или мастичной кровли, укладываемой по железобетонным настилам, учет ТКЛР имеет большое значение.
Теплотехнические свойства

Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении, истирании, а также твердость, пластичность, упругость.

Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для конструкций крыши являются сжатие, растяжение, изгиб, пластичность и упругость. Такие материалы, как кровельная сталь, древесина, керамика, асбестоцемент хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки. Искусственные и природные каменные материалы, например бетоны, растворы и горные породы хорошо сопротивляются сжатию и в 5...50 раз хуже — растяжению, изгибу, удару. Поэтому каменные материалы используют главным образом в конструкциях, работающих на сжатие. Прочность строительных материалов характеризуется пределом прочности. Предел прочности материала измеряется в паскалях (Па) и представляется напряжением, соответствующим нагрузке, вызывающей разрушение образца материала. Предел прочности при сжатии различных материалов колеблется от 0,5...1000 МПа и более. Прочность зависит также от структуры материала, его плотности (пористости), влажности, направления приложения нагрузки.

В материалах конструкций допускаются напряжения, составляющие только часть предела прочности. Таким образом создается запас прочности. При установлении величины запаса прочности учитывают неоднородность материала: чем менее однороден материал, тем выше должен быть запас прочности. При установлении запаса прочности важными являются агрессивность эксплуатационной среды и характер приложения нагрузки. Агрессивная среда и знакопеременные нагрузки, вызывающие усталость материала, требуют более высокого коэффициента запаса прочности. Величину запаса прочности, которая обеспечивает сохранность и долговечность конструкций, зданий, устанавливаю с нормами проектирования и определяют видом и качеством материала.

Упругость — свойство материала восстанавливать свою форму и размеры после снятия нагрузки. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают минимальной величины, установленной техническими условиями на данный материал.

Материал претерпевает пластичные и хрупкие разрушения. Хрупкими материалами называют такие, которые разрушаются при статических испытаниях, при очень малых остаточных деформациях. К хрупким материалам относятся чугун, каменные природные материалы, бетон, керамические материалы, асбестоцемент. Пластичными — называют такие материалы, которые при статических испытаниях до момента разрушения получают значительные остаточные деформации. Пластичность является весьма важным и желательным качеством материала. К пластическим материалам относятся малоуглеродистая сталь, медь, растворные и бетонные смеси, мастики, пасты, битумы и дегти при положительных температурах. Хрупкие материалы обычно гораздо лучше работают на сжатие, чем на растяжение. Они плохо сопротивляются ударам и очень чувствительны к местным напряжениям. Пластичные материалы этих недостатков не имеют. Но большинство материалов при понижении температуры приобретают хрупкие свойства, т.е. у них происходит переход от пластического разрушения к хрупкому. Так ведут себя битумные материалы, некоторые полимеры, металлы и др.

Трещиностойкость - это снижение упруго-пластических деформаций при отрицательных температурах. Исчезает сплошность и однородность материала на его поверхности, что очень важно для материалов, используемых для содержания оболочки крыши. Трещиностойкость характеризуется коэффициентом трещиностойкости.
Механические свойства

К числу физико-химических свойств относится способность отдельных материалов — битумов, дегтей, природных и синтетических смол, масел — образовывать с водой жидкие дисперсии — эмульсии. Некоторые эмульсии, например битумные и дегтевые, хотя и в ограниченных масштабах, применяют для «холодной» обработки дорожных покрытий, для грунтовки бетонных и других поверхностей, перед нанесением гидроизоляционных составов. Эмульсией называется система из двух несмешивающихся жидкостей, где капельки одной жидкости (дисперсная фаза) распределены в другой (дисперсная или, иначе называемая, внешняя среда).

Химическая стойкость — способность материалов противостоять разрушающему действию кислот, щелочей, растворенных в воде солей и газов, органических растворителей (ацетона, бензина, масел и др.). Химическая стойкость характеризуется потерей массы материала при действии на него агрессивной среды в течение определенного времени. Например, битум БНК 45/180 при выдерживании в течение 150 сут. в 5%-ной соляной кислоте теряет 1 % массы, в 5%-ной серной кислоте — 0,8 %. Щелочестойкими должны быть материалы, которые не разрушаются при воздействии щелочей, например пигмента, употребляемые для окрашивания металлической кровли.

Сероводород и углекислый газ содержатся в воздухе в больших количествах, особенно вблизи промышленных предприятий. Поэтому для окрашивания металлических кровель нельзя применять краски, в состав которых входят свинец и медь, так как последние вступают в реакцию с сероводородом и чернеют.

Атмосферостойкость — способность материала длительное время сохранять свои первоначальные свойства и структуру после совместного воздействия погодных факторов: дождя, света, кислорода воздуха, солнечной радиации, колебаний температуры. Оценивается атмосферостойкость временными показателями: час, сутки, месяц, год. Например, органические вяжущие, битумы и дегти, применяемые в производстве кровельных материалов, подвергаясь атмосферным воздействиям, ускоряют свое старение, т.е. становятся хрупкими и теряют водоотталкивающие свойства за счет нарушения сплошности гидроизоляционного ковра. Атмосферостойкость дегтевых материалов (толя, толь-кожи и др.) ниже атмосферостойкости битумных материалов (рубероида, пергамина и др.). Атмосферостойкость находится в прямой зависимости от свойств материала и его состава.

Химические свойства

Биологические свойства — свойство материалов и изделий сопротивляться разрушающему действию микроорганизмов. Органические материалы или неорганические на органических связках под действием температурно-влажностных факторов могут разрушаться вследствие развития в них микроорганизмов, вызывающих гниение и разрушающих материалы в процессе их эксплуатации. Так в Средней Азии материалы, содержащие битум, разрушаются под действием микроорганизмов, которые для своего развития поглощают органические составляющие битума. Специальные добавки — антисептики — повышают биостойкость битумных и деревянных материалов. Кроме того, чтобы сохранять биостойкость органических материалов, рекомендуется оберегать их от увлажнения. Биостойкость материалов на основе дегтевых вяжущих выше биостойкости битумных, так как дегти содержат токсичную карболовую кислоту.



Биологические свойства

Растворимость — способность материала растворяться в воде, бензине, скипидаре, масле и других жидкостях — растворителях. Растворимость может быть и положительным, и отрицательным свойством. Если синтетические материалы разрушаются под действием растворителей, то растворимость в этом случае играет отрицательную роль. Битумы обладают способностью растворяться в бензине. Это положительное свойство растворимости битума используется при приготовлении холодных битумных мастик, которые в присутствии бензина могут быть нанесены на поверхность тонким слоем.

Паропроницаемость — свойство материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала. С повышением температуры парциальное давление водяных паров возрастает. Таким образом, водяные пары стремятся попасть в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой. Этим объясняется увлажнение изоляции, применяемой для поверхности с отрицательными температурами. Влага, проникая в слой изоляции с теплой стороны, увлажняет изоляцию, а при температуре ниже нуля — замерзает. Это вызывает ухудшение свойств изоляции и ее разрушение. Кровельные гидроизоляционные мягкие материалы хорошо сопротивляются прониканию в них влаги и потому являются паронепроницаемыми. Паропроницаемость характеризуется коэффициентом паропроницаемости, размерность его — кг/(м*ч*Па).

Газопроницаемость — свойство материала, характеризуемое количеством газа, проходящего через образец определенного размера при заданном давлении. При возникновении у поверхностей ограждения разности давления газа происходит его перемещение через поры и трещины материала. Строительные материалы с большой пористостью обладают повышенной газопроницаемостью, но степень газопроницаемости зависит не только от абсолютной величины, но и размера и характера пор. Так как кровля является одеждой верхнего перекрытия, то к кровельным материалам предъявляются высокие требования по газопроницаемости.

Усадка — это уменьшение линейных размеров и объема под воздействием изменения температуры, влажности, солнечной радиации или в результате процессов, происходящих в материале, таких, как старение, вулканизация и полимеризация у полимерных материалов: карбонизационных и контракционных — у минеральных. У рулонных кровельных материалов, таких, как изол, бризол, различные пленки, удлинение может быть относительным и остаточным. Усадку выражают в процентах от первоначального размера изделия. Для снижения усадочных напряжений и сохранения монолитности конструкции стремятся уменьшить усадку материала, вводя различные добавки. Особенно ярко усадочные явления проявляются в мастичных кровлях.

Набухание — свойство, противоположное усадке, вызываемое увлажнением материала, и оно намного ниже усадки. У кровельных материалов набухание незначительное, так как они приближаются к абсолютно плотным материалам с водопоглощением, близким к нулю. Материал основания рулонных кровельных материалов (картон) подвержен явлениям набухания.

Адгезия — сопротивление отрыву или сдвигу материала, нанесенного на изолируемую поверхность. Кровельные рулонные и мастичные материалы должны обладать высокой адгезионной способностью. Адгезию выражают величиной силы, приложенной к материалу, с целью его отрыва или сдвига от изолируемой поверхности. Например, адгезия к бетону холодной асфальтовой мастики ИИ-20 при 20 °С составляет 0,23 МПа, а при предварительной огрунтовке пастой — 0,43 МПа. Следовательно, состояние гидроизолируемой поверхности влияет на величину адгезии.

Материалы для устройства и ремонта кровель

Мягкие кровельные материалы по строительно-функциональным признакам можно разделить на несколько групп (рис. 10).






Рис. 10. Классификация мягких кровельных материалов по структурно-функциональным признакам.

Деформативно-прочностные и гидроизоляционные свойства являются наиболее важными показателями качества рулонных битумных материалов. Рулонные битумные кровельные материалы быстро изнашиваются и разрушаются от атмосферных воздействий. От солнечного света битум полимеризуется и теряет часть наиболее летучих компонентов, а под действием кислорода воздуха окисляется и изменяет свои физико-химические свойства. Зимой отрицательная температура воздуха приводит к снижению эластичности материалов. Перепад температуры весной и осенью ведет к деформации основания под гидроизоляцию и самого гидроизоляционного ковра.


Материалы для мягкой кровли

По виду основы рулонные материалы могут быть основные и безосновные. Основой рулонных материалов служат картон, стекловолокно, металл, асбест, полимерно-битумные материалы и бумага. В безосновных рулонных материалах роль основы играют волокна асбеста в виде мелкоармирующих элементов. В зависимости от вида вяжущего материалы могут быть битумные, дегтебитумные, дегтевые, полимерные, резинобитумные, битумно-полимерные, смешанные. В рулонных кровельных материалах устраивают защитный слой. По виду защитного слоя рулонные материалы могут быть: крупнозернистые, мелкозернистые, пылевидные и чешуйчатые, а также покрытия, стойкие к воздействию щелочи, кислоты, озона.




  1   2   3   4   5   6   7


©netref.ru 2017
әкімшілігінің қараңыз

    Басты бет