Химия для любознательных. Основы химии и занимательные опыты



бет11/59
Дата17.05.2020
өлшемі3.38 Mb.
1   ...   7   8   9   10   11   12   13   14   ...   59

Кислота из гипса

Если сульфидов металлов мало (как, например, в ГДР), то исходными продуктами для получения серной кислоты могут служить ангидрит CaSO4 и гипс СаSO4*2Н2О. Метод получения оксида серы (IV) из этих продуктов был разработан Мюллером и Кюне еще 60 лет назад.

Способы получения серной кислоты из ангидрита будут иметь значение и в будущем, так как серная кислота является самым распространенным химическим продуктом. Установки для получения серной кислоты из гипса, производимые в ГДР, известны и ценятся на мировом рынке.

Сульфаты можно разложить, применяя высокую (до 2000 °С) температуру. Мюллер установил, что температуру разложения сульфата кальция можно снизить до 1200 °С, если добавить тонкоизмельченный кокс. Сначала, при 900 °С, кокс восстанавливает сульфат кальция до сульфида, а тот в свою очередь при температуре 1200 °С взаимодействует с неразложившимся сульфатом; при этом образуется оксид серы (IV) и негашеная известь:

900 0С

CaSO4 + 3С  CaS + 2СО2

1200 0С

CaS+ 3CaSO4  4CaO + 4SO2



Разложить сульфат кальция в лабораторных условиях удастся только при применении соответствующей высокой температуры. Будем работать с аппаратурой, подобной той, какая была использована при обжиге пирита, только трубку для сгорания возьмем фарфоровую или железную. Закроем трубку пробками, обернутыми для теплоизоляции асбестовой тканью. В отверстие в первой пробке вставим капилляр, а во второй — простую стеклянную трубку, которую соединим с промывной склянкой, наполненной наполовину водой или раствором фуксина.

Реакционную смесь приготовим следующим образом. Растолчем и ступке 10 г гипса, 5 г каолина (продается в аптеке под названием «Bolus alba») и 1,5 г активного порошкообразного угля. Смесь высушим, нагревая некоторое время при 200 °С в фарфоровой чашке. После охлаждения (лучше всего в эксикаторе) внесем смесь в середину трубки для сжигания. При этом обратим внимание на то, чтобы она не заполнила все поперечное сечение трубки. Затем сильно нагреем трубку с помощью двух горелок (одна снизу, вторая наклонно сверху) и, когда трубка накалится, пропустим через всю систему не слишком сильный поток воздуха. Уже через 10 минут, благодаря образованию сернистой кислоты, раствор фуксина в промывной склянке обесцветится. Выключим водоструйный насос и прекратим нагревание.

Получить высокую температуру мы можем также, если обмотаем как можно плотнее фарфоровую трубку нагревательной спиралью на 750—1000 Вт (см. рисунок). Концы спирали соединим с толстой медной проволокой, которую также многократно обмотаем вокруг трубки, а затем изолируем с помощью фарфоровых бусинок и подведем к штекеру. (Осторожно при работе с напряжением 220 В!) Естественно, в качестве источника нагрева может пригодиться также стеклодувная горелка или паяльная лампа.

В технике работают со смесью ангидрита, кокса, глины, песка и колчеданного огарка Fe2O3. Червячный транспортер подает смесь в 70-метровую вращающуюся трубчатую печь, где сжигают пылевидный уголь. Температура в концевой части печи, в месте горения, составляет примерно 1400 °С. При этой температуре образующаяся в ходе реакции негашеная известь сплавляется с глиной, песком и колчеданным огарком, в результате получается цементный клинкер. Остывший клинкер размалывают и смешивают с несколькими процентами гипса. Получившийся в результате высококачественный портландцемент поступает в продажу. При тщательном проведении и контроле процесса из 100 т ангидрита (плюс глина, песок, кокс и колчеданный огарок) можно получить около 72 т серной кислоты и 62 т цементного клинкера.

Серную кислоту можно получать также из кизерита (сульфата магния MgSO4*H2O), который в значительных количествах поставляют соляные копи ГДР.

Для опыта воспользуемся такой же установкой, как и для разложения гипса, но трубку на этот раз возьмем из тугоплавкого стекла. Реакционную смесь получим, прокалив в фарфоровой чаше 5 г сульфата магния, а в железном тигле с крышкой — 0,5 г активного угля, и затем смешав их и растерев в ступке до пылеобразного состояния. Перенесем смесь в фарфоровую лодочку и поместим ее в реакционную трубку.

Белая масса, которая получится в конце опыта в фарфоровой лодочке, состоит из оксида магния. В технике его перерабатывают в цемент Сореля, являющийся основой для производства ксилолита.

Получение таких важных для строительной промышленности производных продуктов, как цементный клинкер и ксилолит, делает производство серной кислоты из местного сырья особенно экономичным. Переработка промежуточных и побочных продуктов в ценное сырье или конечные продукты является важным принципом химической промышленности.



Получим ксилолит

Смешаем равные части оксида магния и опилок с раствором хлорида магния и слой образовавшейся кашицы толщиной около 1 см нанесем на подложку. Через 24—48 ч масса затвердеет, как камень. Она не горит, ее можно сверлить, пилить и прибивать гвоздями. При строительстве домов ксилолит применяют как материал для полов. Древесное волокно, затвердевшее без заполнения промежутков с цементом Сореля (магнезиальным цементом), спрессованное и склеенное в плиты, используется в качестве легкого, тепло- и звуконепроницаемого строительного материала (плиты гераклита).



ЦЕННЫЕ СИЛИКАТЫ

После того как мы рассмотрели природные хлориды и сульфаты в качестве основного сырья для химического производства, необходимо сказать немного о силикатах.

Кремний — второй по распространенности (после кислорода) элемент в литосфере нашей планеты (почти 28 %). Он встречается преимущественно в виде кремнекислых солей различных металлов, а также в форме чистого оксида (кварц SiO2). Анионы силикатов могут иметь аналогично сульфатам простую формулу [SiO4] однако, чаще всего встречаются сложные структуры, например, [Si4O12], (SiO3)n, (Si2O5)n или (SiO2)n. Так, у полевого шпата альбита формула NaAl[Si3O8], а слоистый силикат каолин отвечает составу Al4[Si4O10](OH)8.

К сожалению, химические опыты с силикатами проводить нелегко, так как получение или превращение силикатов происходит чаще всего при температурах выше 1400 °С. Силикаты зачастую представляют собой не кристаллическую, а стекловидную или спеченную керамическую массу. При этом группы молекул могут образовывать кольца или так называемые сетчатые структуры. Эти вещества при растворении не разрушаются. Практически их можно разрушить только фтористоводородной (плавиковой) кислотой, что создает большие трудности в аналитической химии силикатов. С другой стороны, силикатные материалы имеют огромное значение как строительное сырье, и производство цемента, стекол и керамики быстро увеличивается в соответствии со все возрастающим спросом на строительные материалы. В последнее время созданы новые виды материалов, например, пенобетоны и пеностекла.



Выделение кремневой кислоты из жидкого стекла

Имеющееся в продаже жидкое стекло представляет собой сиропообразный раствор силиката натрия. (Na2Si2O3)n или калия (К2Si2O3)n. В смеси с различными добавками, такими как глинозем, гипс или опилки его можно использовать для изготовления замазок. Оно находит широкое применение при получении огнеупорной краски и огнеупорных покрытий.

В пробирку с разбавленным наполовину жидким стеклом будем добавлять по капле соляную кислоту. Мы заметим появление густого белого осадка кремневой кислоты (Н2SiO3)n или ее ангидрида. По мере увеличения осадка частицы кремневой кислоты образуют структуру, в которой связывается вся оставшаяся вода. Наконец, при некоторой степени разбавления получается эластичный твердый гель кремневой кислоты.

В следующих опытах рассмотрим свойства силикагеля с различным содержанием воды. В маленькие пластмассовые чашечки (например, в крышки от баночек из-под лекарств), наполненные жидким стеклом с различной степенью разбавления, добавим по каплям соляную кислоту и размешаем полученную массу. Мы предлагаем читателю самому выбрать степень разведения исходного вещества в области от 1 : 100 до неразведенного жидкого стекла. Через некоторое время образуются более или менее вязкие составы, которые затем превратятся в эластичные студенистые или твердые массы геля кремневой кислоты. Здесь речь идет о тонком коллоидно-дисперсном распределении кремневой кислоты, которая полностью включила в свою структуру имеющуюся воду.

Свежий гель кремневой кислоты, в котором на молекулу SiO2 приходится 300 молекул Н2О, очень подвижен. Если же на молекулу SiO2 приходится 30—40 молекул Н2О, то гель твердый, и его можно резать ножом. После сушки при слабом нагревании в нем останется шесть молекул H2O на молекулу SiO2, и гель можно размолоть до тонкодисперсного состояния. Разотрем такую пробу в ступке или размелем в старой кофемолке. Затем высушим порошок в фарфоровой чашке или тигле, нагревая на бунзеновской горелке. При этом образуется кремневый ксерогель (от греческого xeros — сушить). Это более или менее пористое вещество, имеющее очень большую удельную поверхность (до 800 м2/г), обладает сильной адсорбирующей способностью. Благодаря этому свойству сухой гель применяют для поглощения водяных паров из атмосферы. Его используют для осушения замкнутых объемов, например внутри упаковок ценных машин и аппаратов. В лабораториях патроны с силикагелем закладывают в кожуха аналитических весов; им заполняют башни для сушки газа. Чаще всего применяют так называемый голубой гель — с добавкой безводного хлорида кобальта (II) (См. раздел «Обнаруживаем кристаллизационную воду»). При потере способности к поглощению воды голубой гель окрашивается в розовый цвет. Мы можем сами получить голубой гель, если смешаем ксерогель с небольшим количеством тонкоизмельченного и хорошо высушенного хлорида кобальта (II).

Способность к поглощению воды проверим, поместив немного высушенного геля на часовом стекле во влажный воздух, например на кухне или на открытом воздухе. Станем взвешивать эту пробу сначала через короткие (10 минут) и затем через длительные интервалы времени. Если на листе миллиметровой бумаги построить графическую зависимость прироста массы от времени, то полученная кривая будет заканчиваться площадкой, соответствующей величине насыщения и указывающей на максимальную степень поглощения воды. Правда, при этом известную роль играет относительная влажность воздуха.



Цемент с наполнителем дает бетон

Бетон сейчас, несомненно, является важнейшим строительным материалом. Покрытия автострад, плиты, столбы, балки, конструкции современных жилых домов и промышленных построек выполнены большей частью из бетона. Бетонные смеси различаются плотностью, прочностью и теплоизоляционными свойствами. Объединяет их то, что они все состоят из цемента и через некоторое время после смешивания с водой затвердевают, поглощая влагу. В этом заключается важнейшее отличие бетона от классического известкового раствора, затвердевание которого происходит под влиянием угольной кислоты с выделением воды.

Высококачественный портландцемент получают, обжигая смесь известняка, глины или мергеля и железистых отходов, например доменных шлаков. Этот процесс протекает при температуре около 1450 0С в огромной (длиннее 100 м) вращающейся трубчатой печи. Важными компонентами портландцемента являются ди- и трехкальциевый силикат, трехкальциевый алюминат и четырехкальциевый алюмоферрит. При затвердевании в результате реакции с водой образуются гидраты силикатов, которые аналогично силикатному гелю, описанному в предыдущем разделе, обволакивают наполнитель и способствуют образованию твердого как камень вещества.

После того, как мы провели уже ряд описанных в предыдущем разделе опытов с гелями, которые имеют различные прочностные свойства, зависящие от способа их получения, в особенности от добавки воды, можем проделать несколько простых опытов по затвердеванию бетона.

Сначала сделаем простую форму для получения цементных брусков. Для этого разделим плоскую сигарную коробку с помощью реек таким образом, чтобы получились одинаковые формы 1 — 2 см в сечении, а длина их будет равна длине коробки.

В отдельные зоны поместим следующие смеси: 1 часть портландцемента и 1, 3, 5 или 8 частей чистого песка; 1 часть портландцемента, 2 части песка и 2 части кирпичной крошки (измельчим кирпич); 1 часть портландцемента, 3 части песка и 2 кусочка стальной проволоки (старые вязальные спицы), которые нужно положить по возможности параллельно по обе стороны формы и постараться ввести их в бетон.

Перед заполнением форм добавим в смесь немного воды, чтобы получилась влажная, но рассыпчатая масса (как влажная земля). Этими смесями заполним формы и тщательно утрамбуем их деревянной палочкой. В течение следующих двух дней будем смачивать цемент водой из пульверизатора или лейки с мелкими отверстиями. Через два дня, постучав по форме, вытащим из нее застывшие пробы, положим их концы на края двух стульев, причем для большей точности подложим под бруски на равном расстоянии трехгранные напильники или другие имеющие грани металлические предметы. К середине бруска на прочной проволоке будем подвешивать груз, увеличивая его до тех пор, пока не появится излом. В другом опыте проверим прочность образцов при сжатии, ударяя по ним молотком или тонким зубилом.

Наконец мы можем при получении образцов варьировать добавку воды и степень увлажнения во время отверждения. При испытании окажется, что бетон, полученный из исходной смеси высокой влажности или не увлажнявшийся при отверждении, значительно уступает в прочности.

Тепло- и звукоизоляционный газо- или пенобетон получают, добавляя в вязкую бетонную массу порошок карбида алюминия или кальция. Если одновременно добавить поверхностно-активное вещество, например какое-нибудь моющее средство, то получающиеся пузырьки газа будут образовывать особенно тонкую пену.

Наряду с пенобетоном применение пеностекла и строительных частей из легких металлов и пластмасс открывает новые возможности, которые уже с успехом реализованы на опытных строительных объектах.


3. МЕТАЛЛЫ - ОСНОВА ТЕХНИКИ

МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ

Почти все важнейшие части орудий производства, начиная с простейших механизмов и кончая сложными машинами, изготовлены из металлов. Хотя широко используемые в последнее время пластмассы частично заменяют металлы, производство металлов все время возрастает, и в будущем все равно главным образом из них будут изготовлять большинство промышленных установок, машины, моторы, электрическую проводку, котлы высокого давления и т. д.

Перечислим некоторые характерные свойства металлов: металлы можно отливать, ковать, вальцевать, вытягивать в проволоку, гнуть, сваривать, паять, обтачивать, сверлить, пилить, строгать.

Сплавляя металлы или вводя в них небольшие добавки неметаллов, можно получать материалы, отвечающие специальным требованиям. Инструменты для обработки металлов (токарные резцы, сверла, специальные пилы и т. д.) должны обладать повышенной твердостью, а листовые или винтовые рессоры, напротив, отличаться эластичностью и одновременно прочностью. От зубчатых колес, валов, болтов и гаек требуется особенная прочность на излом, от тросов и цепей — чрезвычайное сопротивление растяжению, а колбам, цилиндрам, котлам высокого давления приходится переносить высокую температуру, огромное давление и воздействие химически агрессивных веществ.

Без металлов не было бы электротехники. Хорошая проводимость электрического тока характерна для всех «настоящих металлов» и не присуща неметаллическим материалам.

Из более чем 90 химических элементов, встречающихся в природе, около 65 причисляют к металлам. Некоторые элементы, такие как сурьма или полупроводник германий, стоят на границе между металлами и неметаллами.

Еще 200 лет назад большая часть этих металлов не имела никакого технического значения. Довольствовались обычными, в основном легко получаемыми, металлами. Только с наступлением атомного века, при постройке сверхзвуковых самолетов и космических ракет, требования к металлическим материалам резко повысились. Уже в начале нашего века потребности авиационной промышленности привели к развитию производства легких металлов: алюминия и магния. Многочисленные изобретения сделали возможным создание установок для получения таких металлов, названия которых сравнительно недавно были известны немногим. Это прежде всего титан и цирконий, которые встречаются часто, но в основном рассеяны в горных породах и редко встречаются в виде чистых руд. Техническое значение приобрели также бериллий, гафний, индий, ниобий и другие экзотические металлы.

Уран и плутоний служат сегодня горючим для ядерных реакторов, в которых получают тонны трансуранового элемента плутония. Плутоний можно назвать искусственным элементом — в природе он практически не встречается. В результате ядерного расщепления 1 кг плутония выделяется примерно столько же энергии, как при сгорании 2500 т каменного угля или при взрыве такого же количества тринитротолуола!

Все миролюбивые силы в мире борются за проведение в жизнь предложения Советского Союза о нераспространении ядерного оружия и всеобщего и полного разоружения, за то, чтобы накопленные запасы плутония использовались только для получения ядерной энергии в мирных целях на благо человечества.

КЛАССИФИКАЦИЯ МЕТАЛЛОВ

По экспериментальной химии металлов и их соединений можно было бы написать объемистую книгу. До сих пор, изучая с помощью несложных опытов некоторые свойства металлов и их солей, мы в лучшем случае могли сделать многосторонний, но несистематический и далеко не полный обзор. Теперь уделим особенное внимание распределению металлов по группам и важнейшим свойствам этих групп. Далее мы рассмотрим реакции, по которым можно установить наличие определенного металла в смеси веществ.

Для этих опытов нам понадобятся образцы чистых металлов или их сплавов, которые можно изготовить из старых металлических предметов. Токарная стружка и металлические опилки, остатки медной проволоки, старые никелевые и серебряные монеты, алюминиевая фольга и испорченные хромированные части велосипеда, цинковая пластинка из использованной батарейки для карманного фонарика, кусок старого водосточного желоба, свинец из аккумуляторной пластины или из остатка кабеля, оловянная фольга или оловянные фигурки, вольфрамовая нить накаливания из перегоревшей лампочки, молибденовый держатель нити накаливания или сетка использованной радиолампы, никелевый анод этой же лампы — вот некоторые, далеко не полные возможности для заготовки металлических образцов. Само собой разумеется нам потребуются очень небольшие количества дорогих цветных металлов, которые надо постараться извлечь из металлолома.

Наряду с этими образцами воспользуемся также соединениями металлов, которые можно приобрести, так же как и другие химикаты, в аптеке, хозяйственном магазине, в специализированном магазине реактивов и т. д.

В химии металлы классифицируют по их положению в периодической системе элементов — таблица помещена на внутренней стороне переплета (на форзаце). Практики, кроме того, подразделяют металлы на тяжелые и легкие, благородные и неблагородные, тугоплавкие и легкоплавкие, а также классифицируют их с других точек зрения.

Периодическая система состоит, как известно, из групп, которые в свою очередь включают в себя главные и побочные подгруппы элементов, обладающих схожими химическими свойствами, — в таблице они расположены друг под другом. В главной подгруппе первой группы находятся щелочные металлы — литий, калий, натрий, рубидий и цезий, а в побочной подгруппе первой группы — медь, серебро и золото. В главную подгруппу второй группы включены щелочноземельные металлы бериллий, магний, кальций, стронций, барий, радий, а в побочную — цинк, кадмий и ртуть. Третья группа начинается с неметалла бора, затем идут металлы, образующие «земли»: алюминий, скандий, иттрий, 15 редкоземельных элементов и радиоактивный актиний. В соответствующей побочной подгруппе находятся мало известные металлы галлий, индий и таллий. В главных подгруппах четвертой и пятой групп металлический характер обнаруживают только последние члены группы, а в главных подгруппах шестой, седьмой и восьмой групп находятся только неметаллы. Но элементы побочных подгрупп этих групп периодической системы являются металлами. Особенно важны так называемые переходные металлы побочной подгруппы восьмой группы, которые образуют три подгруппы. Здесь содержатся металлы подгруппы железа и платины.

Разделение на группы можно объяснить с помощью атомной теории, но здесь это было бы излишним. Рассмотрим свойства групп и отдельных металлов с помощью опытов.

ЩЕЛОЧНЫЕ МЕТАЛЛЫ (ГЛАВНАЯ ПОДГРУППА I ГРУППЫ)

Щелочные металлы химически очень активны и бурно реагируют с водой, в результате чего образуются сильные основания. С солями щелочных металлов калия и натрия мы уже познакомились.

Аналитически обнаружить эти металлы сложно, так как они не образуют нерастворимых солей при взаимодействии с наиболее употребимыми кислотами, поэтому реакции осаждения возможны лишь со сложными реагентами. Не известны также характерные цветные реакции с простыми реагентами в нерастворенном или твердом состоянии. По окраске пламени натрием и калием их можно обнаружить качественно.

Обнаружение калия и натрия

В несветящемся пламени бунзеновской горелки будем держать палочки магнезии до тех пор, пока не исчезнет начальная окраска пламени. Затем нанесем на палочку чуть-чуть поваренной соли и опять поместим ее в пламя, которое окрасится в яркий желтый цвет. Так как окраска очень интенсивна, а натрий является почти непременной примесью в солях, всегда следует убедиться, сравнивая полученную окраску пламени с окраской пламени чистого соединения натрия, находится ли элемент в виде примеси или в виде основного компонента.

Калий окрашивает пламя в красно-фиолетовый цвет. Чтобы избавиться от мешающего желтого цвета, в который окрашивает пламя присутствующий тут же натрий, воспользуемся голубым фильтром (кобальтовым стеклом). Таким образом можно проверить содержание калия в некоторых солях.

При наличии небольшого количества солей лития можно наблюдать окрашивание этим элементом пламени в чудесный красный цвет.


МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ I ГРУППЫ
В противоположность щелочным металлам, медь, серебро и золото очень инертны. Они обладают незначительным сродством к кислороду, их оксиды очень легко восстанавливать и металлы встречаются в природе в элементарной форме (золото чаще всего). Благородный характер металлов усиливается от меди к серебру, а от него — к золоту. Для остальных побочных групп периодической системы также существует правило, что с увеличением порядкового номера элемента убывает его активность. Разбавленными кислотами металлы побочной подгруппы 1 группы не разрушаются. Но медь и серебро растворяются в сильной азотной кислоте, а золото в царской водке (смесь одной объемной части азотной и трех частей соляной кислоты).

Общими свойствами щелочных металлов и металлов подгруппы меди являются их одновалентность во многих соединениях, а также отличная электропроводность. Правда, иногда медь и серебро могут быть двухвалентными, а золото может образовывать даже трехвалентные соединения.

Некоторые свойства и характерные реакции рассматриваемых металлов изучим в следующих опытах.

Окисление и восстановление меди

В несветящееся пламя бунзеновской горелки внесем пинцетом кусочек медной проволоки. Медь начнет интенсивно окисляться: сначала на поверхности появятся цвета побежалости, затем медь окрасится в черный цвет, так как образуется слой оксида меди (II) CuO. При обычной температуре очень быстро возникает слой красного оксида меди (1) Cu2O, который постоянно существует на поверхности.

Если внести окисленную медь в восстановительную зону пламени бунзеновской горелки (верхняя часть конуса), то оксид восстановится водородом, и мы увидим, что чистый металл красного цвета.

Летучие соединения меди окрашивают пламя в зеленый цвет. В этом мы убедимся, если погрузим медную проволоку в соляную кислоту и затем внесем ее в несветящуюся часть пламени. В этом случае образуется некоторое количество летучего хлорида меди CuCl2, который и окрашивает пламя,

Тонкая медная проволока плавится в несветящемся пламени бунзеновской горелки при 1084 °С. Чтобы нагреть больший кусок меди до этой температуры, нужно применить стеклодувную горелку.

Любую соль меди можно легко восстановить до металлической меди, если расплавить ее с содой на древесном угле с помощью паяльной трубки. Смешаем очень малое количество безводного сульфата меди с безводной содой в соотношении 1:3 и внесем смесь в углубление на кусочке древесного угля. (Обе соли высушим, прокаливая, содержащие воду кристаллы в пробирках из тугоплавкого стекла или в фарфоровых тиглях на пламени бунзеновской горелки.) Затем направим на смесь восстановительное пламя паяльной лампы. Через некоторое время охладим смесь и обнаружим в углублении красные крупинки металлической меди.



Обнаружение меди в сплавах

На присутствие меди укажет уже окраска. Если у сплава красный или желтый оттенок, вероятно, в нем имеется медь. Правда, например, сплавы меди с серебром даже при высоком содержании меди имеют серебристый цвет. Старые, так называемые серебряные монеты содержат от 10 до 75% меди! Предварительную пробу проведем, капнув на металл азотной кислотой. На присутствие меди укажет появляющаяся чаще всего после высыхания зеленая кромка нитрата меди (похожую реакцию дает никель). Исследуем полученное соединение с помощью перла буры. Для этого нагреем палочку магнезии в несветящемся пламени и горячей погрузим ее в буру. Прилипнувшая соль сплавится, в результате получится стекловидный шарик. Этот шарик в горячем состоянии положим на след соединения меди, например, на кромку нитрата, образовавшегося в предыдущем опыте. После нагревания в окислительном пламени перл буры окрасится в зеленый цвет, который при охлаждении изменится на голубой. Соединение никеля в этом случае окрасит буру в коричневый цвет.

Наконец, растворим немного металла в азотной кислоте. Как при всех аналитических реакциях, будем применять как можно меньшее количество вещества. Вполне достаточно будет кусочка, величиной с булавочную головку.

Зальем в пробирке металл азотной кислотой. Он растворится с образованием ядовитых красно-коричневых паров оксида азота. Поэтому будем проводить опыт обязательно на открытом воздухе или под тягой.

Если раствор окрасится в голубовато-зеленый цвет, то, вероятно, в сплаве присутствует медь. Чтобы убедиться в этом наверняка, разбавим раствор дистиллированной водой и разделим его. К первой порции добавим по каплям гидроксид аммония (нашатырный спирт). Если в сплаве присутствует медь, то сначала выпадет в осадок гидроксид меди Сu(ОН)2, который при добавлении избытка гидроксида аммония растворится, окрасив раствор в темно-синий цвет. При быстром добавлении нашатырного спирта осадок не выпадает, а сразу наблюдается синяя окраска:

Сu2+ + 2NH4OH  Cu(OH)2 + 2NH4+

Cu(OH)2+ 4NH4OH— [Cu(NH3)4] (OH)2+ 4H2O

В результате этой реакции образуется гидроксидтетраммин меди (II). Это пример комплексного соединения. Для того чтобы понять его строение, представим себе, что четыре группы NН3 располагаются вокруг иона меди и образуют вместе с ним один большой катион, который в свою очередь связан с ионами гидроксида.

Такие комплексы могут быть очень устойчивы. Если в растворе присутствует медь, то она не даст осадка при взаимодействии с NaOH, но при добавлении сероводородной воды выпадет в осадок черно-коричневый сульфид меди.

Ко второй порции растворенной металлической пробы добавим немного раствора желтой кровяной соли (гексациано-(II)феррат калия). (Осторожно! Яд!) Если выпадет красно-коричневый осадок, то наличие меди будет доказано.

Прежде чем проводить все аналитические реакции обнаружения, следует поставить вопрос, достаточно ли они отчетливы.

Например, если в растворе содержится ион никеля, то при добавлении аммиака будет наблюдаться такая же окраска раствора, которая образуется при наличии меди, а в присутствии железа, напротив, обе пробы могут быть неотчетливо выражены. Поэтому для точного определения меди необходим совпадающий результат всех предварительных проб и реакций.

Если же в растворе имеются ионы железа, то иногда металлы следует химически разделить.

Укажем также на то, что соли меди ядовиты (как большинство солей тяжелых металлов). Раствор сульфата меди, например, действует как рвотное средство.



Опыты с серебром

Мы часто использовали раствор нитрата серебра для определения соляной кислоты или хлоридов. Так как нитрат серебра нелегко достать, то получим небольшое количество его, растворив кусочек старого серебряного предмета (серебряной монеты, обломка ложки, украшения или цепочки). Серебряные предметы, однако, состоят не из чистого металла, а из сплавов, которые часто содержат в качестве второго компонента медь. Она придает металлу большую твердость, а при высоком содержании способствует растягиванию. Чтобы получить чистый нитрат серебра, необходимо разделить оба металла.

Сначала растворим наш металл в чистой азотной кислоте, разбавленной водой в соотношении 1:1. При этом выделяется большое количество оксидов азота. (Опыт проводить только под тягой или на открытом воздухе. Газы не вдыхать!) При замедлении реакции слегка подогреем раствор для полного растворения. Благодаря наличию меди раствор окрасится в сине-зеленый цвет. Готовый раствор разбавим троекратным количеством дистиллированной воды и отфильтруем в химический стакан.

Тем временем приготовим крепкий раствор поваренной соли в дистиллированной воде и будем добавлять его к азотнокислому раствору металла до тех пор, пока не перестанут образовываться хлопья осадка. Далее в течение 10 минут будем нагревать жидкость на водяной бане, при этом очень тонкий осадок укрупнится и выпадут большие хлопья. Эти хлопья состоят из хлорида серебра, растворимость которого равна 1,5 мг на литр воды. Отфильтровав, отделим осадок от содержащего медь раствора и многократно промоем его теплой водой. Последние промывные воды не должны давать голубого окрашивания при взаимодействии с аммиаком!

Теперь восстановим хлорид серебра до чистого металлического серебра. Поместим осадок вместе с вдвое большим (по массе) количеством кусочков цинка или алюминия в химический стакан и зальем разбавленной (10 %-ной) соляной кислотой. Цинк или алюминий растворятся с выделением водорода, причем одновременно хлорид серебра восстановится до серебра — серого металлического порошка. Этот порошок отфильтруем и растворим (на открытом воздухе или под тягой) в чистой азотной кислоте. Последняя ни в коем случае не должна содержать соляной кислоты, иначе снова образуется хлорид серебра. Разбавим раствор дистиллированной водой и выпарим, в результате получится твердый нитрат серебра. Можно сохранить и азотнокислый раствор и применять его как реагент. Для всех реакций обнаружения применяются сильноразбавленные растворы, но использовать для разбавления следует только дистиллированную воду, так как водопроводная вода содержит следы хлоридов и дает с раствором нитрата серебра помутнение (проверить!).

Твердый нитрат серебра и его концентрированные растворы очень едкие; поэтому соль раньше называли адским камнем. Крепкие растворы оставляют на коже черные пятна, которые очень трудно удалить, они возникают в результате восстановления соли до тонкодисперсного серебра. С небольшой частью раствора нитрата серебра проведем следующую реакцию.

При добавлении раствора соляной кислоты или хлорида натрия опять выпадут творожистые хлопья хлорида серебра. Эта реакция служит для обнаружения серебра или хлорид-ионов. Кроме серебра нерастворимые или труднорастворимые хлориды образуют ртуть и свинец. Серебро можно идентифицировать, добавив избыток нашатырного спирта. Хлорид серебра при этом полностью растворяется с образованием комплексного диамминохлорида серебра, в то время как осадки хлоридов ртути и свинца остаются неизменными.

К другой части раствора нитрата серебра добавим несколько миллилитров раствора бихромата калия. Если раствор имеет кислую реакцию, сначала нейтрализуем его разбавленным раствором щелочи (NaOH). Выпадающий красно-коричневый осадок хромата серебра, также может служить для обнаружения серебра.

Чтобы обнаружить серебро в любом металлическом изделии, спилим на незаметном месте небольшое количество металла и растворим его в чистой азотной кислоте (без примеси соляной кислоты). Если при этом выпадет осадок или раствор помутнеет, то либо азотная кислота была загрязнена, либо в пробе присутствовали олово, сурьма или висмут. С раствором проведем обе описанные выше реакции обнаружения.

Так же как при идентификации меди, обнаружению мешает одновременное присутствие в пробе некоторых металлов. Если, например, проба содержит свинец, ртуть, алюминий или цинк, то осадок хлорида серебра растворяется в аммиаке не полностью. Аналитик должен тогда провести химическое разделение.

При добавлении сероводородной воды из растворов солей серебра выпадает в осадок черный сульфид серебра. Он образуется также, если серебро находится в атмосфере, содержащей следы соединений серы. Это бывает, например, в воздухе промышленных местностей или на кухне, где горит газовая плита. Серебряные предметы со временем покрываются коричневым или черным налетом. Его можно удалить разбавленными кислотами, нашатырным спиртом или имеющимся в продаже средством для чистки серебра.

Основной процесс фотографии

В умеренно темном помещении осадим некоторое количество хлорида серебра из раствора, слегка подогреем его, чтобы осадок уплотнился, и отфильтруем, причем шпателем распределим хлорид серебра на фильтре по возможности равномерно. Или можно смешать суспензию хлорида серебра с раствором желатины и намазать кашицу на гладкий картон или стеклянную пластинку. Положим на фильтр или на пластину кусок черной бумаги, который затемнит часть покрытия, и выставим на некоторое время (около 1 часа) на солнечный свет. Затем осмотрим слой в умеренно темном помещении. В тех местах, куда попадал свет, соль приобрела фиолетовую окраску. Под воздействием света некоторое количество хлорида серебра разложилось и образовались зародыши элементарного серебра.

Во втором опыте добавим к некоторому количеству хлорида серебра раствор тиосульфата натрия Na2S2O3. Осадок быстро растворится, при этом образуется комплексная соль:

AgCl + 2Na2S2O3  Na3[Ag(S2O3)2] + NaCl

В фотографии хлорид серебра используют главным образом для светочувствительной бумаги. Пленки и фотопластинки покрыты бромидом и иодидом серебра, так как эти соли обладают большей светочувствительностью, чем хлорид серебра. Экспонированные слои обрабатывают восстановителями (проявитель). При этом в местах, подвергшихся воздействию света, где уже образовались зародыши металла, протекает дальнейшее восстановление до металлического серебра. Избыточная соль серебра растворяется в растворе тиосульфата натрия (фиксаж). Изображение после этого остается устойчивым при воздействии света.

Серебро с нескольких проявленных фотопластинок можно растворить небольшим количеством разбавленной азотной кислоты и затем обнаружить его в растворе, как было описано выше.



Пробирное искусство

Для быстрого определения подлинности золотых и серебряных изделий проводят так называемую пробу на выдержку. Прежде всего с предмета (в незаметном месте) снимем тончайший слой золотого или серебряного покрытия (Для этого достаточно один раз провести по предмету надфилем. Прим. ред.). Затем проведем этим местом по тонкому камню для пробы на золото, на котором останется металлическая полоска. В качестве пробного камня используется разновидность черного сланца. Но можно взять и кусок обыкновенного сланца (только очистим его азотной кислотой) или обломок фарфора, хотя на нем штрихи видны не так отчетливо.

Для определения серебра приготовим пробирную кислоту из 1 части чистой азотной кислоты и 1 части бихромата калия. Если испытуемый материал содержит больше 0,3 серебра, то смоченное кислотой место окрасится в красный цвет, так как образуется хромат серебра. При известном навыке по оттенку цвета можно установить приблизительное содержание серебра.

Чтобы идентифицировать золото, смочим исследуемую пробу 30 %-ным раствором азотной кислоты. Если металл не растворится, то это укажет на наличие золота; латунь или бронза растворяются в кислоте. Более точно установить содержание золота можно, используя растворы кислоты различной концентрации.

Если смочить золотые предметы раствором нитрата серебра, то они не изменятся, в то время как на латуни и других неблагородных металлах выделится серебро.

Крупные золотые предметы можно узнать также по их большой массе, так как плотность золота 19,3 г/см3, что в 2,5 раза больше плотности латуни,


ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ (ГЛАВНАЯ ПОДГРУППА II ГРУППЫ)
Среди элементов этой подгруппы только магний и кальций имеют большое значение. В то время как металлический кальций бурно реагирует с влагой воздуха и с водой, магний покрыт пленкой оксида, которая защищает его от дальнейшего разрушения. С помощью подходящих добавок можно еще более повысить устойчивость магния. Благодаря этому свойству его используют в сплавах, из которых изготовляют изделия, работающие в тяжелых погодных условиях (несущие поверхности самолетов и т. д.), а также корпуса двигателей сгорания. Важнейшие сплавы магния известны под названием электрон. Так называют группу сплавов, которые содержат около 90 % магния и различное количество добавок марганца, алюминия, цинка или других компонентов. Тонкими полосками такого сплава можно пользоваться в большинстве опытов наряду с чистым металлом.

Свойства и обнаружение магния

Кусочек ленты магния или стружку электрона с помощью тигельных щипцов осторожно поместим в пламя бунзеновской горелки. При температуре выше 500 °С металл воспламенится и сгорит с появлением очень яркого белого пламени. (Защитим глаза темными очками или темными стеклами.) При этом образуется тонкодисперсный оксид магния, который некоторое время будет в виде белого тумана висеть в воздухе, а позже осядет вокруг.

Можно получить безопасную вспышку магния, если немного порошка магния поместить в открытый конец стеклянной трубки длиной не менее 60 см, а затем быстро ввести его в несветящееся пламя бунзеновской горелки, дунув в другой конец этой трубки. При этом предметы отбросят четкую тень на освещенные солнцем поверхности, доказав таким образом чрезвычайную яркость магниевого пламени. Она обусловлена высокой (более 2000 °С) температурой сгорания магния, при которой интенсивно светится образовавшийся оксид магния. Высокая температура, в свою очередь, объясняется недостатком газообразных продуктов сгорания, которые обычно быстро рассеивают тепло при других подобных процессах.

Магний очень бурно реагирует с твердыми окислителями, как это видно из следующего опыта.

Разотрем в ступке кусочек перманганата калия величиной с горошину и насыплем порошок на лист бумаги. Потом смешаем его с полуторным (по объему) количеством магниевого порошка. Хотя эта смесь не очень чувствительна к удару (в противоположность смесям порошка магния с другими окислителями), будем из осторожности перемешивать ее гусиным пером. Готовую смесь поместим в пакетик, который закроем, загнув бумагу. Разожжем на открытом воздухе в безопасном месте (!) небольшой костер из бумаги и хвороста и внесем в пламя пакетик, привязанный к концу палки длиной 2 м. Через некоторое время последует глухой взрыв. (При опыте необходимо надеть защитные очки. Указанные количества ни в коем случае не превышать!) Через некоторое время, если имеется влага, например снег, вокруг костра появится фиолетовое пятно — это разбрызгивался перманганат калия. Мы должны категорически предостеречь от приготовления других взрывоопасных смесей на свой страх и риск. Легкомысленное проведение взрывов не имеет ничего общего с серьезными химическими опытами.

Предметы из сплава электрон можно отличать по матовому серому цвету и легкости. Для определения плотности металла погрузим изделие в мерный цилиндр, частично наполненный водой, и по разности положений воды определим его объем. Плотность получим, разделив массу предмета на его объем. Она составит для чистого магния только 1,74 г/см3, а для алюминия, например, 2,7 г/см3, то есть примерно на 40 % больше.

Теперь приготовим немного опилок магния и проведем с ними предварительную пробу в пламени.

Для химического обнаружения магния растворим очень небольшой его кусочек в соляной кислоте. Разбавим раствор равным количеством воды и для нейтрализации частями добавим концентрированный раствор гидроксида аммония. При этом образуется плотный туман хлорида аммония. Если возникает осадок, добавим немного концентрированного раствора хлорида аммония. Ежели после этого осадок не растворится, значит он содержит другой металл и осадок следует отфильтровать. В чистый фильтрат добавим концентрированный раствор гидрофосфата натрия, который приготовим заранее. Если в фильтрате находится магний, то тотчас или через некоторое время выпадет белый осадок двойного фосфата магния — аммония. Если же раствор в течение нескольких часов останется чистым, значит проба не содержит магния, но нужно проверить, правильно ли были соблюдены условия опыта, добавив для контроля в раствор немного соли магния.



Обнаружение кальция

Кальций в природе встречается в виде соединений. Для обнаружения кальция к водному раствору вещества добавляют некоторое количество раствора оксалата аммония или другой соли щавелевой кислоты. (Осторожно! Щавелевая кислота и ее соли ядовиты!) При этом выпадет белый осадок оксалата кальция, который не растворяется в уксусной кислоте. Если на соединение, содержащее кальций, капнуть соляной кислоты и внести его в пламя, то оно окрасится в кирпичный цвет. Ученые с помощью спектрометра обнаруживают двойную красную и зеленую спектральные линии.


МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ II ГРУППЫ
Из металлов побочной подгруппы II группы рассмотрим здесь только цинк. Хотя цинк активнее железа, он обладает большей стойкостью в атмосфере, так как покрыт защитной пленкой. Но цинк очень легко растворяется в разбавленных кислотах. Плотность цинка 7 г/см3, плавится он при температуре 419 °С, а кипит при 906 °С, то есть может испариться уже в пламени бунзеновской горелки. Раньше из цинка изготавливали водосточные кровельные желобы, бачки для воды, ванны и т. д. Сейчас он почти полностью вытеснен из этих областей потребления, но по-прежнему применяется для изготовления литых изделий. Так, ручки дверей и детали отделки легковых автомашин (например, «Вартбург») представляют собой никелированные цинковые литые изделия. Кроме того, цинк применяют для изготовления металлических электродов сухих элементов в батарейках карманных фонариков и анодных батареях. Из его сплавов наиболее известна латунь, которая наряду с медью содержит 18—50 % цинка. Наконец, необходимо упомянуть об оксиде цинка, который широко используется как краска (цинковые белила).

Опыты с цинком

Нагреем немного цинка на древесном угле в окислительном пламени паяльной лампы. Металл расплавится и при высокой температуре начнет испаряться. Одновременно, однако, он будет сгорать с появлением голубовато-белого пламени. На поверхности около пламени выпадет оксид цинка; в нагретом состоянии он желтого цвета, а в холодном — белый.

Для проведения пробы на цинк растворим кусочек металла в соляной кислоте, разбавим ее и нейтрализуем раствором едкого натра, который осторожно добавим по частям. Выпадает студенистый осадок гидроксида цинка Zn(OH)2, который растворяется в избытке щелочи. При этом образуется цинкат натрия Na[Zn(OH)3]. Это соединение можно рассматривать как натриевую соль цинковой кислоты. С другой стороны, цинк при взаимодействии с кислотами образует соли, в которых выступает в качестве катиона. То есть, в соединениях он может быть не только катионом, но и анионом, и образовывать, соответственно, кислоты и основания.

Если к осадку гидроксида цинка добавить разбавленной соляной кислоты, то он растворится в ней, при этом образуется хлорид цинка. Гидроксиды с таким двойственным характером называются амфотерными. Похожим образом ведет себя, например, гидроксид алюминия.

Для обнаружения цинка осадим гидроксид цинка едким натром из раствора, содержащего цинк, отфильтруем осадок и накалим его с помощью паяльной лампы на кусочке угля, добавив несколько капель очень сильно (!) разбавленного раствора хлорида или нитрата кобальта. Цинк обнаружится по зеленому окрашиванию пламени, которое вызовет образующийся смешанный оксид цинка — кобальта (зелень Ринманна).

Этот опыт можно провести проще. К исследуемому раствору добавим несколько капель раствора соли кобальта. Затем окунем в него полоску фильтровальной бумаги, подождем, пока впитавшийся раствор высохнет, сожжем полоску в несветящемся пламени бунзеновской горелки и прокалим золу. При наличии цинка также появится зеленая окраска. При этих схемах определений возможны помехи, если присутствуют некоторые другие элементы. Так алюминий с кобальтом дают голубой цвет, который иногда мешает определению зеленой окраски присутствующего одновременно цинка.


МЕТАЛЛЫ ГЛАВНОЙ ПОДГРУППЫ III ГРУППЫ
Здесь стоит остановиться на алюминии, так как он (кроме неметалла бора) единственный доступный нам среди 19 металлов этой группы. Особенность третьей группы заключается в наличии 15 редкоземельных металлов, которые помещаются в одной клетке периодической системы. Так как они обладают очень близкими свойствами, их определение представляет для аналитиков серьезную трудность. Металлы подгруппы алюминия в своих соединениях чаще всего трехвалентны, химически они довольно активны, но защищены оксидной пленкой от воздействия кислорода или других агрессивных сред.

Алюминий—важнейший легкий металл

Поместим полоску листового алюминия или кусочек алюминиевой проволоки в несветящуюся часть пламени бунзеновской горелки. Металл покроется плотным слоем оксида алюминия Al2O3. Чистый алюминий плавится при 658 °С, однако в данном случае этого не произойдет, так как он защищен пленкой оксида.

Оксид алюминия плавится при 2700 °С в кислородно-водородной горелке или в электрической дуге. Переплавленный оксид алюминия обладает большой твердостью. Его используют в качестве синтетического корунда при производстве камней для часов. Загрязненный корунд применяется в качестве абразива (наждак). Драгоценные камни — рубин и сапфир — состоят из оксида алюминия со следами красящих добавок (оксидов хрома, кобальта и титана). Сейчас их получают синтетически.

Оксид алюминия можно получить в виде серовато-белого порошка, если кусок алюминиевой фольги (серебряной бумаги) подержать в пламени. Фольга полностью окислится. Если тонкий порошок алюминия (он продается в качестве серебряной и золотой краски) распылить в пламени, то он воспламенится и образует искры.

Чтобы расплавить металл, положим кусочек алюминия в маленький фарфоровый тигель, который закроем крышкой для уменьшения окисления. Нагреем его на самом сильном пламени бунзеновской горелки или, лучше, в тигельной печи, описание которой дано на стр. 93. Если при застывании энергично размешать расплавленный металл железной проволокой, то образуется алюминиевая крупка, которая применяется в металлургии.

Для обнаружения алюминия растворим небольшое количество исследуемого металла. Однако сделать это не так-то просто, потому что всегда присутствующая на поверхности пленка оксида защищает металл от дальнейшего разрушения разбавленными кислотами. Даже концентрированная азотная кислота (в которой растворяется большинство металлов) почти не разрушает алюминий, так как защитная способность пленки оксида под ее окисляющим действием еще усиливается. (Проверьте!) Если мы зальем алюминиевые опилки концентрированной соляной кислотой, то сначала не заметим никакой реакции. Только через некоторое время металл начнет растворяться с образованием хлорида алюминия и выделением водорода. Так как реакция экзотермична, смесь нагревается, причем растворение усиливается. Содержимое стакана может, наконец, закипеть и вспениться.

Осторожно! Применять только небольшие количества! Так как кислота может выплеснуться, надо держаться на расстоянии и надеть защитные очки!

Разбавим полученный раствор и проведем с ним несколько реакций. При добавлении в него разбавленного раствора едкого натра в осадок выпадает студенистый бесцветный гидроксид алюминия:

АlСl3 + 3NaОН  3NaCl + Аl(ОН)3

При дальнейшем добавлении концентрированного раствора едкого натра образуется растворимый алюминат натрия:

Аl(ОН)3 + 3NаОН  Nа3[А1(ОН)6]

Нашатырный спирт также осаждает гидроксид алюминия, однако в избытке нашатырного спирта осадок не растворяется, в то время как гидроксид цинка растворяется с образованием комплексного соединения.

Отфильтруем немного гидроксида алюминия. Высушим фильтр с осадком и затем нагреем на угле в пламени паяльной лампы. При этом гидроксид алюминия отщепляет воду и переходит в оксид, который при нагревании дает яркое белое свечение. Охладим его немного и смочим несколькими каплями сильно разбавленного раствора соли кобальта. Если после этого прокалить оксид еще некоторое время паяльной лампой, масса окрасится в голубой цвет в результате образования алюмината кобальта (тенардовой сини).

Как и при обнаружении цинка, мы можем добавить нитрат или хлорид кобальта непосредственно в раствор, затем намочить полоску фильтровальной бумаги в полученном растворе и сильно прокалить золу, полученную при ее сжигании. Тот, кто вопреки указаниям будет использовать писчую бумагу, получит почти во всех случаях положительный результат, так как соединения алюминия применяют для пропитки бумаги.


ГРУППА УГЛЕРОДА (ГЛАВНАЯ ПОДГРУППА IV ГРУППЫ)
Чтобы не исключать из рассмотрения все редкие элементы, проведем несколько опытов с полупроводником германием. Германий стоит на границе между металлами и неметаллами. Он является полупроводником, и это свойство обуславливает его сегодняшнее широкое применение. Небольшие, специально обработанные кусочки германия используются в диодах для выпрямления электрического тока и в транзисторах в качестве усилителей тока и напряжения. Для опытов возьмем два или испорченных германиевых диода или транзистор из негодного радиоприемника. Так как в последнее время в полупроводниковых элементах стали использовать неметалл кремний, необходимо посоветоваться со специалистом и убедиться, что ваша проба действительно содержит германий. Осторожно вскроем клещами оболочку элемента. В глубине мы увидим блестящий кристаллик германия. Извлечем его тонкой отверткой. С одним или несколькими такими кристаллами проведем следующие реакции.

Опустим германий в пробирку с 5—8 мл 3 %-ного раствора пероксида водорода, в который добавим несколько капель гидроксида аммония и за несколько минут доведем раствор до кипения. Германий быстро растворится, причем образуется, в основном, оксид германия (IV) GeO2.

Раствор разделим на три части. К первой порции осторожно добавим несколько капель азотной кислоты (до появления отчетливой кислой реакции). Затем вольем 5 %-ный раствор молибдата аммония и будем нагревать в течение нескольких минут. В результате образуется германиевомолибденовая кислота лимонно-желтого цвета. Мешает этой реакции присутствие большого количества селена, мышьяка, фтора или органических кислот.

Другую часть раствора, содержащего германий, подкислим соляной кислотой и подействуем на раствор сероводородной водой. (Осторожно! Яд!) В противоположность другим элементам, в сильнокислом растворе выпадает белый осадок сульфида германия или наблюдается помутнение раствора в результате образования тонкодисперсного сульфида.

Третью пробу прежде всего нейтрализуем разбавленной уксусной кислотой. После этого будем добавлять соляную кислоту до тех пор, пока величина рН не достигнет значения между 4 и 5, в чем убедимся с помощью универсальной индикаторной бумаги (рН — водородный показатель, равный отрицательному логарифму концентрации ионов водорода. Нейтральной среде (чистой воде) соответствует рН = 7. Большей кислотности среды соответствует меньшая величина рН. — Прим. перев.). Если мы добавили слишком много кислоты, прибавим немного гидроксида аммония для частичной нейтрализации.

Далее приготовим раствор из 1 г таннина (природного продукта, применяемого для дубления) в 10 мл горячей воды. При взаимодействии растворов, содержащих германий и таннин, выпадает коричневато-белый осадок. Эта реакция очень чувствительна и, что еще важней, при соблюдении определенных условий специфична для данного элемента.

Наверное, у многих читателей возникнет вопрос, каким образом пришли к использованию столь разнообразных препаратов.

Химики должны неустанно и как можно более полно исследовать свойства и реакции различных веществ. В ходе тысяч дипломных, диссертационных и других исследовательских работ изучается поведение элементов и соединений по отношению к различным реагентам. Реакции обнаружения почти всегда являются результатом длинного ряда опытов, в котором только один приносит счастливый результат. Полученные данные собраны в изданном на немецком языке «Справочнике по неорганической химии» Гмелина. Доказательством разнообразия исследований служит тот факт, что такому малоизвестному элементу, как германий, посвящены в этом справочнике два тома. Первый, изданный в 1931 г., содержит 62 страницы убористого шрифта, а второй, дополнительный том, появившийся в 1958 г., — уже 576 страниц! Трудно представить, сколько будет опубликовано материала о германии в 2000 г.



Олово — необходимый, но редкий элемент

Олово известно людям с давних времен, когда начинала развиваться металлургия, так как бронза, которая дала название целой эпохе развития человечества, является сплавом меди и олова. Несмотря на это, олово довольно редкий элемент. Его доля в земной коре оценивается только в тысячную часть процента (как и для германия). Правда, олово не рассеяно в горных породах, а встречается в рудах с большим содержанием металла, которые образуют прожилки в породах. Например, в Рудных горах в Саксонии олово широко добывалось еще в средние века.

Олово сейчас — ценнейший цветной металл, с которым необходимо обходиться очень бережно. Если раньше металл тратили на изготовление монет, фигурок, кубков, кувшинов и другой посуды, а также вплоть до нашего времени из него получали станиоль для закупоривания винных бутылок, то теперь олово чаще всего употребляют в виде покрытия на тон ком листовом железе (белая жесть) или (в сплаве со свинцом, цинком или кадмием) в качестве припоя.

Имея кусочек чистого олова, можно изучить свойства металла. Если нагревать его в тигле, то при 200 °С в результате изменения внутренней структуры металла он превратится в серый порошок. Чистый металл плавится уже при 232 °С. Расплавим немного олова в тигле и в подходящей форме (стеклянной трубке или деревянном лотке) отольем из него палочку. При сгибании оловянной палочки мы услышим хрустящий звук — «крик олова».

Благодаря очень тонкой поверхностной пленке оксида олово довольно устойчиво на воздухе и сохраняет свой матовый, светло-серебристый металлический блеск. При нагревании расплавленного олова на воздухе постепенно образуется оксид олова. Смешанные с содой или углем соединения олова можно с помощью паяльной трубки восстановить до металла, который образуется в виде маленьких шариков.

Для обнаружения олова растворим металлическую пробу в нескольких миллилитрах азотной кислоты, которую разбавим равным количеством воды. При легком нагревании металл растворится. Осторожно! Опыт проводить только под тягой или на открытом воздухе из-за выделения ядовитого оксида азота!

При наличии олова растворение не будет полным, а появится осадок или помутнение, которые вызваны образованием нерастворимой -оловянной кислоты.
ГРУППА АЗОТА (ГЛАВНАЯ ПОДГРУППА V ГРУППЫ)
В главной подгруппе V группы два элемента обнаруживают как неметаллические, так и металлические свойства. Это сурьма и висмут. Их применяют в небольших количествах в качестве добавок к сплавам. Сульфид сурьмы содержится в горючих составах для спичек. Соединения висмута и сурьмы используются в медицине: например, бинты для перевязки ожога, мазь и порошок от ожога содержат нитрат висмута. Висмут является последним устойчивым элементом периодической системы; все элементы с большим номером радиоактивны, т. е. их атомные ядра, испуская элементарные частицы, превращаются в более легкие ядра.

Сурьму можно обнаружить или посредством длительных процессов разделения, или с помощью выделения очень ядовитого сурьмянистого водорода.

Мы удовлетворимся простой, но не всегда явной пробой. Растворим исследуемый металл, например кусочек шрифтолитейного сплава, в концентрированной азотной кислоте. (Осторожно! Ядовитые пары — работать под тягой или на открытом воздухе!)

Растворение будет неполным, возникнет белый осадок, который состоит из оксида и гидроксида сурьмы. Сольем азотную кислоту и немного подогреем осадок (также под тягой или на открытом воздухе) с концентрированной соляной кислотой. Затем разбавим водой, в случае необходимости отфильтруем и добавим сероводородную воду. (Осторожно! Яд!) В результате образуется оранжево-желтый осадок сульфида сурьмы.

Для пробы на висмут также растворим металл в концентрированной азотной кислоте. (Осторожно! Ядовитые пары!) В этот раствор медленно вольем несколько миллилитров дистиллированной воды. Через некоторое время выделится белый осадок. Нитрат висмута реагирует с водой с образованием труднорастворимой так называемой основной соли:

Bi(NO3)3 + Н2O  ВiONО3 + 2HNO3

При добавлении концентрированной азотной кислоты осадок растворится, но опять выпадет при новом разбавлении водой. После частичной нейтрализации разбавленным раствором едкого натра (Осторожно!) раствор нитрата висмута дает при взаимодействии с сероводородной водой коричневый осадок сульфида висмута.

При добавлении раствора йодида калия выпадает черный осадок йодида висмута, который вновь растворяется в избытке йодида калия.

Главные подгруппы VI, VII и VIII групп выпадают из нашего рассмотрения, так как они не содержат металлов. Металлы побочной подгруппы V группы не будем рассматривать, так как их весьма трудно достать.
МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ VI ГРУППЫ
Металлы побочной подгруппы VI группы твердые, хрупкие; для них характерна очень высокая температура плавления; при взаимодействии с кислородом они образуют кислоты, соли которых называют хроматы, молибдаты и т. д.

Благодаря защитной пленке оксида хром чрезвычайно коррозионно стоек, поэтому его применяют для получения защитных и декоративных покрытий. Хром и молибден относятся к важнейшим компонентам сплавов и легированных сталей, которым они придают высокую коррозионную стойкость и механическую прочность. Молибден и вольфрам плавятся при 2600 и 3370 °С соответственно; поэтому из них изготовляют нити накаливания и их держатели в лампах, а также сетки и аноды в электронных трубках. Наконец, уран нашел применение в качестве ядерного горючего в атомных реакторах.

Металлы этой подгруппы могут проявлять в соединениях самую различную валентность, но самые важные, конечно, соединения трех- и шестивалентных элементов.

Цветные осадки с хромом

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома. Соединения шестивалентного хрома чаще всего окрашены в желтый или красный цвет, а для трехвалентного хрома характерны зеленоватые тона. Но хром склонен еще и к образованию комплексных соединений, а уж они окрашены в самые разные цвета. Запомним: все соединения хрома ядовиты.

Бихромат калия К2Сr2O7 — самое, пожалуй, известное из соединений хрома и получить его всего легче. Красивый красно-желтый цвет свидетельствует о наличии шестивалентного хрома. Проведем с ним или с очень похожим на него бихроматом натрия несколько опытов. Сильно нагреем в пламени бунзеновской горелки на фарфоровом черепке (кусочке тигля) такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0С с образованием темной жидкости. Прогреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок.

Часть его растворим в воде (она приобретет желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия К2СrО4, зеленый оксид хрома (III) и кислород:

2K2Cr2O7  2K2CrO4 + Cr2O3 + 3/2O2.

Благодаря своей склонности к выделению кислорода бихромат калия является сильным окислителем. Его смеси с углем, сахаром или серой энергично воспламеняются при соприкосновении с пламенем горелки, но не дают взрыва; после сгорания образуется объемистый слой зеленой — благодаря присутствию оксида хрома (III) — золы. (Осторожно! Сжигать не более 3—5 г на фарфоровом черепке, иначе горячий расплав может начать разбрызгиваться. Держать расстояние и надеть защитные очки!) Соскребем золу, отмоем ее водой от хромата калия и высушим оставшийся оксид хрома. Приготовим смесь, состоящую из равных частей калийной селитры (нитрата калия) и кальцинированной соды, добавим ее к оксиду хрома в соотношении 1 : 3 и расплавим полученный состав на черепке или на магнезиевой палочке. Растворив остывший расплав в воде, получим желтый раствор, содержащий хромат натрия. Таким образом, расплавленная селитра окислила трехвалентный хром до шестивалентного. С помощью сплавления с содой и селитрой можно перевести все соединения хрома в хроматы.

Для следующего опыта растворим 3 т порошкообразного бихромата калия в 50 мл воды. К одной части раствора добавим немного карбоната калия (поташа). Он растворится с выделением CO2, а окраска раствора станет светло-желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50 %-ный раствор серной кислоты (Осторожно!), то снова появится красно-желтая окраска бихромата.

Нальем в пробирку 5 мл раствора бихромата калия, прокипятим с 3 мл концентрированной соляной кислоты под тягой или на открытом воздухе. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому что хромат окислит НСl до хлора и воды. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.

В другой пробирке осторожно добавим к бихромату калия (в количестве, умещающемся на кончике ножа) 1—2 мл концентрированной серной кислоты. (Осторожно! Смесь может разбрызгиваться! Надеть защитные очки!) Смесь сильно нагреем, в результате выделится коричневато-желтый оксид шестивалентного хрома СrO3, который плохо растворяется в кислотах и хорошо в воде. Это ангидрид хромовой кислоты, однако иногда как раз его называют хромовой кислотой. Он является сильнейшим окислителем. Смесь его с серной кислотой (хромовая смесь) используется для обезжиривания, так как жиры и другие трудно устранимые загрязнения переводятся в растворимые соединения.

Внимание! Работать с хромовой смесью надо чрезвычайно осторожно! При разбрызгивании она может вызвать тяжелые ожоги! Поэтому в наших экспериментах откажемся от применения ее в качестве средства для очистки.

Наконец, рассмотрим реакции обнаружения шестивалентного хрома. Поместим в пробирку несколько капель раствора бихромата калия, разбавим его водой и проведем следующие реакции.

При добавлении раствора нитрата свинца (Осторожно! Яд!) выпадает желтый хромат свинца (хромовый желтый); при взаимодействии с раствором нитрата серебра образуется красно-коричневый осадок хромата серебра.

Добавим пероксид водорода (правильно хранившийся) и подкислим раствор серной кислотой. Раствор приобретет глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира (Осторожно! Опасность воспламенения!) перейдет в органический растворитель и окрасит его в голубой цвет.

Последняя реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. Но, например, азотная кислота не разрушает хром, как мы можем легко убедиться, используя кусочки поврежденного хромового покрытия. При длительном кипячении с 30 %-ной серной кислотой (можно добавить соляную кислоту) хром и многие хромсодержащие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадет серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30 %-ный пероксид водорода (Осторожно! Яд!). При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром. Вместо описанного выше способа можно тонкие опилки металлической пробы сплавить с содой и селитрой, промыть и отфильтрованный раствор испытать пероксидом водорода и серной кислотой.

Наконец, проведем пробу с перлом. Следы соединения хрома дают с бурой яркую зеленую окраску.

Обнаружение молибдена и вольфрама

Из вольфрама, который имеет самую высокую среди металлов температуру плавления (3370 °С), изготавливают нити накаливания в электрических и радиолампах. Молибденовую проволоку используют для изготовления держателей нитей накаливания в электрических лампах. Сетки электронных ламп также состоят чаще всего из молибдена, а аноды — из молибдена или никеля. Мы можем использовать в качестве исследуемых образцов рассматриваемых металлов детали из нескольких испорченных ламп накаливания или радиоламп. Кроме того, молибден и вольфрам — важные компоненты высококачественных специальных сталей и сплавов.

Растворим кусочки вольфрамовой или молибденовой проволоки в азотной кислоте, к которой осторожно добавим концентрированный раствор пероксида водорода. (Осторожно! Жидкость может разбрызгиваться! Выделение ядовитых паров! Работать только под тягой или на открытом воздухе на некотором расстоянии!)

И вольфрам, и молибден окислятся, образуя оксиды шестивалентных металлов WO3 и MoO3. Оксид вольфрама образует желтый осадок, а оксид молибдена частично растворится в избытке кислоты с появлением красной окраски.

В щелочном растворе эти оксиды переходят в соли молибденовой или вольфрамовой кислоты. Молибдаты и вольфраматы можно также получить непосредственно с помощью сплавления кусочков металла с содой и селитрой и промывания водой.

Для обнаружения вольфрама выпарим досуха несколько капель азотнокислого раствора на фарфоровом черепке (на открытом воздухе, находясь на надлежащем расстоянии!). К остатку добавим разбавленной соляной кислоты и снова высушим, выпарив раствор. Затем добавим несколько капель соляной кислоты и крохотный кусочек олова или крупинку хлорида олова (II) (подойдет также кусочек белой жести от старой консервной банки).

При наличии вольфрама появится голубая окраска. Эта реакция очень чувствительна, она позволяет обнаружить уже 0,0001 мг вольфрама. С помощью этой реакции можно доказать, что даже такой чрезвычайно труднолетучий металл, как вольфрам, при длительном употреблении электрической лампочки немного испаряется. Для этого разобьем перегоревшую после долгой эксплуатации лампочку большой мощности. Растворим осевший на внутренней стороне колбы металл и проведем реакцию определения.

Для обнаружения молибдена проделаем следующие реакции. Несколько капель азотнокислого раствора исследуемого металла выпарим досуха. (Осторожно! Работать только под тягой или на открытом воздухе! Пары не вдыхать!) К остатку добавим по капле концентрированных растворов аммиака и пероксида водорода. (Осторожно!) Появится розовато-желтая или вишневая окраска.

А если остаток после выпаривания осторожно нагреть с несколькими каплями концентрированной серной кислоты, то в присутствии молибдена появится голубое окрашивание.

Внимание: при нагревании концентрированной серной кислоты обязательно повернуть отверстие пробирки в сторону от лица. Надеть защитные очки и держаться на нужном расстоянии! Пробирку рассматривать только после охлаждения!


МЕТАЛЛЫ ПОБОЧНОЙ ПОДГРУППЫ VII ГРУППЫ
Из металлов этой подгруппы мы рассмотрим только марганец. Рений, последний металл группы, очень редко встречается, а элемент под номером 43 (технеций) имеет только неустойчивый радиоактивный изотоп. В природе он не встречается, так как элемент, существовавший в ранний период истории солнечной системы, давно разложился. Средствами ядерной физики этот элемент можно получить искусственно. Впервые такой процесс удалось провести в 1937 г., и первый синтезированный элемент назвали технецием.

Однако вернемся к марганцу. Хотя после железа это второй по распространенности в земной коре тяжелый металл, в чистом виде он не встречается. Главным потребителем марганца является металлургия — он компонент многих сплавов. Например сплав электрон и многие стали содержат по несколько процентов марганца.

Важнейшими соединениями марганца являются пиролюзит МnО2 и перманганат калия КМnО4. Мы уже познакомились с ними ранее и теперь перейдем к обнаружению марганца. Чтобы обнаружить этот металл в сплавах, необходимо провести сложное химическое разделение. Однако следующие реакции часто применяют для доказательства наличия марганца. Для опытов лучше всего использовать загрязненный марганец, получение которого описано на стр. 94, или пиролюзит из старой батарейки для карманного фонарика.

Растворим кусочек исследуемого марганца в разбавленной соляной кислоте, выпарим раствор на открытом воздухе или под тягой и сначала проверим остаток с помощью перла буры. При внесении в окислительную зону пламени бунзеновской горелки перл окрасится в фиолетовый цвет, который перейдет при охлаждении в красно-фиолетовый. Если перл станет черным, значит мы взяли слишком много марганца. Окраска полностью исчезнет, если еще раз нагреть перл, но уже в зеленом восстановительном конусе пламени бунзеновской горелки.

Благодаря своему окислительному действию пиролюзит применяется в производстве стекла для осветления мутных стекольных расплавов.

Специфическую реакцию марганца мы получим при сплавлении остатка выпаренного раствора с содой и селитрой. (Осторожно! Держаться на надлежащем расстоянии!) При этом образуется манганат калия К2МnО4, который придаст расплаву зеленый цвет. Мы уже знаем, что хром при тех же условиях дает желтую окраску, благодаря образованию хромата натрия. На присутствие марганца укажет также красный цвет, который появляется при нагревании остатка с калийной селитрой и фосфорной кислотой. (Осторожно! Опасность ожога и разбрызгивания!)


ПЕРЕХОДНЫЕ МЕТАЛЛЫ VIII ГРУППЫ
Кроме железа, кобальта и никеля к переходным металлам относятся шесть элементов платиновой группы. Ими мы заниматься не станем, поскольку их у нас нет. Вместо этого подробно займемся определением важнейших металлов подгруппы железа.

Железо—самый употребительный металл

О значении и применении железа здесь скажем только, что в мире его производится примерно в двадцать раз больше, чем всех остальных металлов, вместе взятых.

Рассмотрим сначала поведение металла в пламени. Если дунуть в стеклянную трубку, наполненную железными опилками, так, чтобы они влетели в несветящуюся часть пламени бунзеновской горелки, то опилки частично сгорят, и мы будем наблюдать безопасный дождь из искр. Точно так же могут воспламениться и очень тонкие токарные стружки. Лучше всего внести в цилиндр, наполненный кислородом, раскаленную стружку. Железо раскалится до белого каления и сгорит.

Чугун, получаемый в доменной печи, содержит около 10 % примесей, из них примерно 3 % составляет углерод, а остальные — кремний, марганец, сера и фосфор. Целью очистки стали является полное или частичное удаление этих примесей и придание металлу свойств, необходимых в различных отраслях потребления. При производстве инструментов особое место занимает закалка. На стр. 101 описано, как лучше всего изучить этот процесс, используя лезвия безопасной бритвы.

Закаливать можно только сорта стали с содержанием углерода 0,5—1,7 %, а также многие легированные стали. Процесс основан на сложных изменениях в структуре микроскопических кристаллитов, из которых состоит сталь.

Теперь перейдем к соединениям железа и его определению. Железо хорошо растворяется в умеренно разбавленных кислотах — соляной, азотной или серной. (Осторожно! Работать под тягой или на открытом воздухе!) При этом образуются зеленоватые соли железа (II). Селитра окисляет железо (особенно при нагревании) до трехвалентного состояния.

В небольшом химическом стакане растворим 2 г железных опилок в соляной кислоте, разбавленной двойным количеством воды. При этом выделяется водород и ядовитые, с неприятным запахом водородные соединения серы, фосфора и кремния, которые образуются из примесей железа. Зеленый раствор хлорида железа (II) профильтруем и используем для следующих реакции.

При взаимодействии с гидроксидом натрия образуется осадок гидроксида железа (II), который постепенно окисляется кислородом воздуха до красно-коричневого гидроксида железа (III).

Добавление сероводородной воды не вызовет осадка, но чёрный осадок сульфида железа выпадет при прибавлении сульфида аммония, который приготовим, пропустив сероводород через нашатырный спирт. (Осторожно обращаться с ядовитым сероводородом!)

При взаимодействии с комплексной солью гексациано-(III)ферратом калия (красной кровяной солью) образуется ярко-голубой осадок турнбулевой сини, который при больших концентрациях становится почти черным (реакция идентификации). Осторожно! Гексацианоферрат — яд, который можно использовать только в виде очень сильно разбавленных растворов!

При кипячении с концентрированной азотной кислотой (Осторожно! Работать под тягой или на открытом воздухе!) или с пероксидом водорода хлорид железа (II) окислится с образованием коричневого хлорида железа (III). Так как хлорид железа (III) может нам еще понадобиться, выпарим окисляющий раствор и поместим осадок в воду. Сохраним полученный разбавленный раствор.

С небольшими количествами раствора хлорида железа (III) проведем следующие реакции.

Гексациано-(III)феррат калия окрашивает раствор в коричневый цвет, если окисление прошло полностью; если окраски нет, значит в растворе еще есть ионы двухвалентного железа.

С помощью роданида калия KSCN (тиоцианата калия) можно провести чувствительную реакцию обнаружения трехвалентного железа. Добавка одной капли раствора этой соли приводит к образованию роданида железа (III), обладающего интенсивной красной окраской. Благодаря этой реакции можно обнаружить миллионные доли грамма железа. Для того чтобы продемонстрировать чувствительность этой реакции, будем снова и снова разбавлять в десять раз пробу раствора хлорида железа (III) дистиллированной водой и проверим, при каком разбавлении окраска еще заметна.

Чтобы обнаружить железо в сплавах, зачистим до блеска напильником или наждаком место испытания, нанесем на него каплю соляной кислоты, и немного позже — каплю растворенного гексациано-(III)феррата калия. Если в сплаве есть железо, это проявится благодаря появлению турнбулевой сини. (При высокой концентрации железа окраска проявится только при разбавлении водой.)

На присутствие железа мы можем испытать любые пробы веществ (например, руду, золу, озоленные части растений). Для этого нагреем их с чистой соляной кислотой (без примесей железа) и добавим немного пероксида водорода для окисления железа до трехвалентного состояния. Профильтрованный раствор испытаем роданидом. При высоких концентрациях железа окраска будет темной, а если его только следы, раствор может быть от розового до желтого цвета.

При ржавлении железа на воздухе главным образом образуется красно-коричневый гидроксид железа (III) Fе(ОН)3. (Истинная структура ржавчины, конечно, сложнее.) Это вещество чрезвычайно плохо растворяется в воде. Только 105 л воды могли бы растворить несколько молекул! Прокипятим в течение длительного времени немного железных опилок в дистиллированной воде, затем сольем воду и добавим новой. Через несколько дней образуется отчетливая ржавчина. Несмотря на это, добавление роданида не даст никакой реакции, так как железо практически не переходит в раствор.

Наконец, проведем еще пробу соединений железа с перлом буры. В окислительном пламени бунзеновской горелки оно будет желтым или бесцветным, в восстановительном — бледно-зеленым.



Кобальт—компонент магнита

Кобальтовые руды зачастую очень похожи на медные, серебряные или оловянные. Свое название металл получил в средние века; оно произошло от норвежского слова kobold (злой дух). Из металлов подгруппы железа кобальт самый редкий; содержание его в земной коре составляет около тысячной доли процента. В чистом виде металл не применяют, но он является важнейшим компонентом сплавов и специальных сталей, прежде всего стали для постоянных магнитов. Стали для изготовления режущих инструментов также часто содержат кобальт. Гальванические кобальтовые покрытия мало применимы, потому что они вследствие поверхностного окисления приобретают тусклый красноватый цвет. Правда, они устойчивее по отношению к слабым кислотам, чем хромовые или никелевые, поэтому иногда кобальт используют для покрытия фруктовых ножей. При облучении нейтронами в атомном реакторе кобальт переходит в радиоактивный изотоп 60Со. Это радиоактивное вещество обладает очень интенсивным гамма-излучением; период его полураспада 5,2 года. Радиоактивный кобальт применяется как источник гамма-лучей при лечении рака и в исследовательской работе.

Реакции обнаружения лучше всего провести с небольшим количеством хлорида кобальта (II) CoCl2, растворенным в воде. Мы уже указывали раньше на изменение цвета — от синего до красного — безводной и водосодержащей соли. Это свойство присуще и другим солям кобальта.

Проведем с разбавленным раствором несколько реакций. При добавлении гидроксида натрия NaOH в осадок выпадает голубой гидроксид кобальта (II); если нагреть пробирку, он перейдет в устойчивую форму с розовой окраской. При стоянии на воздухе постепенно образуется коричневатый гидроксид кобальта (III). Простые соли трехвалентного кобальта в основном нестойки в растворе.

Сульфид аммония (NH4)2S даст черный осадок сульфида кобальта, который не растворяется в разбавленных кислотах.

В небольшом объеме воды растворим нитрит калия KNO2 в количестве, умещающемся на кончике ножа. (Осторожно! Яд!) и вдвое больше хлорида калия. Введем в раствор несколько капель уксусной кислоты (уксусной эссенции) и исследуемого раствора. При слабом нагревании выпадет желтый осадок комплексного соединения гексанитрокобальтата-(III) калия К3[Со(NO2]6). Это важнейшая реакция определения!

Растворим в небольшой пробе сильно разбавленного раствора хлорида кобальта несколько кристалликов твердого роданида аммония NH4SCN. Можно также провести эту реакцию (тоже в небольших количествах) с роданидом калия и несколькими каплями гидроксида аммония. Образуется темно-синий раствор тетратиоцианатокобальтата-(II) аммония:

CoCl2 + 4NH4SCN  2NH4Cl + (NH4)2[Co(SCN)4]

Очень характерна реакция с перлом буры. Следы кобальта и в окислительном и в восстановительном пламени окрашивают перл в темно-синий цвет. Кобальт придает стекломассе синюю окраску, поэтому его используют для изготовления синих декоративных стекол. Мы может пронаблюдать этот эффект, расплавив в тигельной печи несколько осколков легкоплавкого стекла (осколков изогнутой трубки) с добавкой небольшого количества хлорида кобальта.

Никель удовлетворяет самым строгим требованиям

Никель наряду с хромом является важнейшим компонентом многих сплавов. Он придает сталям высокую химическую стойкость и механическую прочность. Так, известная нержавеющая сталь V2A содержит в среднем 18 % хрома и 8 % никеля и поэтому называется часто сталь 18/8 (В СССР аналогичная сталь маркируется Х18Н10Т.— Прим. перев.). Для производства химической аппаратуры, сопел самолетов, космических ракет и спутников требуются сплавы, которые устойчивы при температурах выше 1000 °С, то есть не разрушаются кислородом и горючими газами и обладают при этом прочностью лучших сталей. Этим условиям удовлетворяют сплавы с высоким содержанием никеля. Назовем здесь группу таких хромо-никелевых сплавов: монель-металл, который содержит никель медь и небольшие количества других металлов; никелин; константан; инвар; платиний и др.

Чистый никель применяют для получения гальванических покрытий. Из чистого металла или сплавов с высоким содержанием никеля изготовляют электроды радиоламп. Воспользуемся для опытов никелевым анодом старой радиолампы.

Растворим кусочек металла в азотной кислоте — в крайнем случае осторожно нагреем. (Осторожно! Ядовитые пары! Работать под тягой или на открытом воздухе.) Раствор окрасится в зеленый цвет благодаря образованию нитрата никеля Ni(NO3)2. После полного или частичного растворения металла разбавим раствор водой и осторожно нейтрализуем разбавленным раствором гидроксида натрия.

Если к отобранной пробе будем и далее добавлять раствор гидроксида натрия, то выпадет зеленый осадок гидроксида никеля Ni(OH)2.

Похожие осадки, правда, дают также медь и двухвалентное железо. Чтобы различить эти металлы, добавим к смеси немного бромной воды или кашицу хлорной извести. (Осторожно! Яд!) Из названных металлов только никель дает черный или коричнево-черный осадок, свидетельствующий о получении диоксида никеля NiO2.

Специфической реакцией обнаружения никеля служит взаимодействие с органическим реагентом диметилглиоксимом C4H8N2O2. В нескольких миллилитрах спирта приготовим раствор этого реактива (взятого на кончике ножа) и добавим несколько миллилитров концентрированного раствора аммиака. Будем хранить реагент в плотно закрытом сосуде (лучше всего с притертой пробкой). Нейтральный сильно разбавленный раствор соли никеля при добавлении нескольких капель реактива даст ярко-красный осадок. Некоторые другие металлы, например железо, в этом случае дают коричневатые осадки. Можно таким образом проанализировать и металлические предметы. Для этого подержим в несветящемся пламени бунзеновской горелки часть предмета, благодаря чему металл окислится и затем смочим это место реактивом. В присутствии никеля образуется розовое пятно.

Если нагреть в окислительном пламени перл буры со следами никелевой соли и затем охладить, то он окрасится в красно-коричневый цвет. Восстановленный перл бесцветен или окрашен в серый цвет из-за присутствия тонкодисперсного никеля.



АНАЛИТИКА - ПРОБНЫЙ КАМЕНЬ ДЛЯ ЮНОГО ХИМИКА

По поводу изученных реакций обнаружения металлов и их соединений необходимо сделать несколько общих замечаний. Мы познакомились прежде всего с характерными реакциями, которые служат для обнаружения металлов, то есть вникли в чрезвычайно важную область аналитической химии, главной задачей которой является определение состава любых соединений или смесей.

Различают качественный и количественный анализ, в зависимости от того, требуется ли только обнаружить элемент или его соединение или же нужно определить его количественное содержание. Описанные ранее реакции служат для качественного определения металлов, которые присутствуют в растворах их солей чаще всего в виде катионов. Речь пока шла об обнаружении катионов, хотя, как мы видели, многие металлы склонны к образованию анионов. С некоторыми важными методами определения анионов (например, сульфат-, нитрат- или хлорид-ионов) мы познакомимся позже, анализируя удобрения, а качественное определение органических веществ проведем в начале главы 4 («Химия углерода»).

Нельзя недооценивать значение аналитической химии. Аналитические задачи постоянно решаются и на промышленных предприятиях. Это прежде всего постоянный контроль сырья по чистоте, контроль состава промежуточных и конечных продуктов. Систематическое изучение аналитической химии полезно и юным химикам, которые знакомятся со свойствами веществ и приемами химической практики. Аналитические работы требуют аккуратности и тщательности при проведении эксперимента. Аналитика по праву занимает большой объем в учебных программах студентов-химиков. Мы хотим посоветовать нашим читателям исследовать на наличие описанных металлов как можно больше различных проб — металлов, солей, смесей известного и неизвестного состава. Только таким образом лучше всего можно приобрести тонкое чутье, которое необходимо химику-аналитику. С самого начала давайте работать по возможности с небольшими количествами исследуемых веществ. Это не только поможет сэкономить реактивы, но и будет соответствовать положению вещей в практике, где зачастую в распоряжении имеются только незначительные количества веществ.

Разумеется, каждого может постигнуть разочарование. Мы указывали уже, что посторонние вещества зачастую мешают проведению отдельных аналитических реакций. Поэтому, даже при безупречном проведении качественного анализа чаще всего не обойтись без химического разделения.

Анализ начинается с так называемых предварительных проб, к которым относятся реакции с перлом буры, окрашивание пламени, сплавление с содой и др. Наконец, вещество растворяют и, добавляя осадители, отфильтровывая и вновь осаждая вещества из фильтрата, разделяют его на шесть аналитических групп.



1 группа. Разбавленной соляной кислотой осаждаем хлориды ртути, серебра и свинца (последний неустойчив). Осадки отфильтровываем и исследуем на данные металлы.

2 группа. В фильтрат (после первого осаждения) добавляем сероводородную воду (Осторожно! Яд! Работать под тягой или на открытом воздухе!) — в осадок выпадают сульфиды свинца, меди, ртути, олова, мышьяка, сурьмы, висмута и кадмия. Осадок отфильтруем и исследуем вызывающие сомнение элементы. Для этого необходимо провести дальнейшее разделение.

3 группа. Фильтрат (после второго осаждения) прокипятим под тягой, чтобы удалить избыток сероводорода (Осторожно! Не вдыхать сероводород!); далее прокипятим раствор с азотной кислотой, чтобы окислить ионы двухвалентного железа до трехвалентных, и обильно добавим нашатырный спирт и раствор хлорида аммония. Железо, хром и алюминий выпадут в осадок в виде гидроксидов, и их можно определить с помощью описанных реакций.

4 группа. При добавлении бесцветного сульфида аммония из фильтрата (после третьего осаждения) выпадут в осадок сульфиды цинка, кобальта, никеля и марганца

5 группа. Фильтрат (после четвертого осаждения) подкислим, удалим избыток сероводорода кипячением под тягой, добавим твердый карбонат аммония и снова прокипятим. Таким образом мы отделим карбонаты щелочноземельных металлов: кальция, стронция и бария.

6 группа. Фильтрат (после пятого осаждения) содержит еще щелочные металлы натрий и калий, а также щелочноземельный металл магний в форме хлоридов, сульфатов и нитратов.

Начинающим исследователям очень полезно подвергнуть такому разделению несколько проб. Подробности и возможные осложнения описаны в учебниках по аналитической химии. Но там описание хода разделения дано только для важнейших металлов. О редких элементах придется справляться в специальных изданиях.

В заключение хотим напомнить, что в аналитической химии большое значение имеет опыт, и там, где новичок не сможет узнать осадок или окраску, нередко искушенный аналитик «почувствует» результат.

ПОЛУЧИМ МЕТАЛЛЫ

В промышленности получение металлов начинается с добычи руды. Наибольшее значение имеют сульфидные и оксидные руды, такие как магнетит Fe3O4, пирит FeS2, медный колчедан CuFeS2, свинцовый блеск PbS. Применяются также карбонаты, сульфаты, хлориды и другие соли. Большинство руд, однако, не является чистыми соединениями одного металла, а смешаны с горными породами или другими соединениями. Обогащение руд состоит в том, что сырые руды переводятся в состояние, пригодное для металлургической обработки. В простых случаях достаточно механической сортировки. Сульфидные руды необходимо с помощью обжига переводить в оксиды. Особенно трудно обогащать так называемые бедные руды, в которых нужного элемента совсем мало.

Например, доля меди в медистых сланцах Мансфельда составляет не более 3 %, а никелевые и оловянные руды саксонских Рудных гор содержат только незначительные количества металла. Поэтому меднолитейный завод в Мансфельде или металлургический завод по производству никеля в г. Эгидине оснащены сложными обогатительными установками.

Из оксидов чистые металлы получают путем восстановления углеродом или другими средствами. Доменный процесс является примером этого метода.

Легкие металлы, такие как алюминий и магний, получают, разлагая соли, чаще всего хлориды, электрическим током. Таким образом производят алюминий, магний и щелочные металлы. Титан и цирконий получают также электролизом или восстановлением соединений металла с помощью магния или натрия.

Получив неочищенный сырой металл, необходимо его очистить, потому что примеси оказывают существенное влияние на их механические свойства и коррозионную стойкость. Так, фосфор, придающий стали хрупкость, удаляют в томасовском процессе, а углерод частично окисляют, продувая через сталь воздух или кислород. Медь и свинец очищают с помощью электролитического рафинирования, удаляя примеси, причем в качестве побочного продукта получают ценное серебро.

Современная техника все чаще требует применения чистых металлов и металлов в монокристаллической форме. В промышленном масштабе уже производится алюминий с содержанием в среднем 99,999 %. В то время как обычно металлы состоят из маленьких кристалликов (поликристаллическое строение), из расплава при точном соблюдении условий затвердевания можно получить единые большие кристаллы (монокристаллы). Они обладают характерными и несколько лучшими механическими и другими свойствами. Из монокристаллического металла уже изготовлены, например, опытные образцы лопастей турбин. В Дрездене и Фрайберге ученые постоянно работают над дальнейшим развитием методов получения металлов высокой чистоты и определенной структуры.

Естественно, мы сможем провести только некоторые простые опыты, которые дают нам представление о принципах металлургии.



ПРОМЫВКА И ОБЖИГ РУД

Начнем с некоторых опытов по подготовке руды. Так как у нас вряд ли найдется руда, искусственно приготовим обедненную руду. Добавляя раствор соды в раствор сульфата меди, осадим карбонат меди или, например, смешаем раствор нитрата свинца с сероводородом. (Лучше непосредственно ввести газообразный сероводород в раствор. Осторожно! Соли свинца ядовиты; ядовитый сероводород вводить только под тягой или на открытом воздухе!) Полученный карбонат меди или сульфид свинца отфильтруем или отделим с помощью отстаивания и декантации. Высушенный осадок смешаем с тонкодисперсными примесями, например мелким песком (кизельгуром), известью (отмученным мелом) и порошком каменного угля. Лучше всего приготовить много различных смесей в небольших количествах.



Обогащение руды

Поместим эти смеси в пробирки, зальем водой и добавим немного смазочного масла. Затем сильно взболтаем. При этом образуется эмульсия из мелких капелек масла в воде, которая, однако, сразу после взбалтывания опять разделится на два слоя: верхний — масляный и нижний — водный. В большинстве случаев чистая «руда» соберется в верхнем слое масла, а «примеси» окажутся на дне. Казалось бы, соединения металлов тяжелее, значит, следовало ожидать обратного результата. Но дело в том, что частички руды смачиваются маслом, а известь, песок и т.д. — не смачиваются. Этот эффект усиливается, если добавить пенообразующие вещества, которые обеспечивают более тесный контакт между рудой, водой и маслом. В другую пробирку со смесью добавим немного стирального порошка или мыла и также будем наблюдать разделение.

Подобным образом обогащают в технике медные, свинцовые, молибденовые и урановые руды. Для этого руды необходимо тонко размолоть, смешать с водой, маслом и поверхностно-активными веществами и пропустить через эту смесь интенсивный поток воды или воздуха. Верхний слой отделяется, он содержит обогащенную руду. Этот способ называется флотационное обогащение или просто флотация.

Обжиг руды

Для обжига сульфидной руды используем сульфид цинка или свинца, имеющиеся в продаже. Поместим грубый порошок сульфидной руды (половину чайной ложки) в середину тугоплавкой стеклянной трубки длиной около 25 см. Один конец трубки закроем тампоном из стеклянной ваты и пробкой, которую обернем алюминиевой фольгой для защиты от высокой температуры. В отверстие в пробке вставим согнутую стеклянную трубку и соединим ее с промывной склянкой, в которой находится раствор красителя фуксина или простая вода. Во время опыта над сульфидом необходимо пропускать воздух. Для этой цели либо используем водоструйный насос, либо будем нагнетать воздух с противоположной стороны стеклянной трубки с помощью воздушного насоса, фена или работающего как воздуходувка пылесоса. Однако поток воздуха не должен быть слишком сильным. В случае необходимости будем таким образом регулировать его с помощью Т-образной трубки со шлангом или крана, чтобы в промывной склянке постоянно, с большой частотой образовывались пузырьки.

Будем нагревать сульфид до красного каления в тугоплавкой трубке с помощью сильной бунзеновской горелки (со щелевой насадкой) и пропускать над ним поток воздуха в течение 10—15 минут. При этом сульфид превратится в оксид. При нагревании сульфида цинка мы заметим знакомую желтую (а после охлаждения — белую) окраску оксида цинка. Одновременно обесцветится раствор фуксина, и распространится резкий запах оксида серы (IV) — сернистого газа. Общее уравнение процесса выглядит следующим образом:

2MeS +3O2  2МеО + 2SO2

Процесс обжига тяжелых металлов экзотермичен, то есть идет с выделением тепла. Поэтому после начала реакции можно прекратить или ограничить подвод тепла. В техническом процессе температура поддерживается самопроизвольно.

ВЫПЛАВКА МЕДИ И СВИНЦА В ЛАБОРАТОРНОМ ТИГЛЕ

Самым простым и дешевым восстановителем оксидных руд является углерод. Раньше для металлургической переработки оксидов применяли древесный уголь, а теперь — кокс. Углерод может восстановить оксиды многих металлов, но для проведения реакции чаще всего требуется высокая температура. Для получения меди и свинца необходима температура яркого красного каления. Чтобы можно было нагреть до нужного состояния маленький фарфоровый тигель вместимостью 10 мл, построим простую тигельную печь. В нескольких старых кусках шамота с помощью острого зубила и маленького молотка необходимо выдолбить углубление таким образом, чтобы при сборке кусков получилось грушевидное отверстие, в глубине которого подвесим тигель на треугольнике из проволоки. Верхний выход закроем небольшим перевернутым цветочным горшком с отверстием в дне. Смысл этого приспособления состоит в том, чтобы сосредоточить тепло только в тигельном пространстве и уменьшить его потери, возникающие из-за охлаждения потоками воздуха или излучения. На всякий случай обмотаем цветочный горшок стальной проволокой, чтобы черепки не развалились, если горшок лопнет.

Установку укрепим на треножнике и будем нагревать снизу сильным несветящимся пламенем бунзеновской горелки. При наличии стеклодувной горелки нужная температура, конечно, достигается быстрее.

Восстановление оксида меди

Высушим около 10 г оксида меди (II) СuO при умеренном нагревании открытого тигля или фарфоровой чашки при температуре более 100 0C. Разотрем оксид пестиком и смешаем с 1 г тонкодисперсного древесного угля (с куска угля можно соскоблить порошок ножом).

Смесь поместим в маленький фарфоровый тигель, который неплотно закроем крышкой, чтобы образующийся углекислый газ мог улетучиваться. Будем сильно нагревать смесь в нашей печи, пока не начнется реакция. После этого охладим тигель и зальем его содержимое водой. Если взмутить суспензию, то легкие частицы древесного угля отделятся от более тяжелых красноватых шариков меди. Можно попытаться сплавить шарики в плотно закрытом тигле при наивысшей температуре в печи. Заодно проверим, достижима ли в печи температура более 1000 °С.

Свинец из свинцового глета

В качестве исходного вещества используем оксид свинца (II), иначе называемый свинцовым глетом. Этот тяжелый желтый порошок применяют для изготовления пластырей и замазки, поэтому его можно приобрести в аптеке или в хозяйственном магазине. Высушим 15 г оксида свинца, как было описано выше, и смешаем с 1 г порошкообразного древесного угля. Заполним смесью тигель, положим сверху кусочки угля и неплотно закроем крышкой. Сильно нагреем смесь в печи, через 10 минут после начала опыта перемешаем ее угольным стержнем и продолжим нагревание еще в течение 10 минут. Затем откроем печь, тигельными щипцами возьмем горячий тигель и выльем расплавленный свинец.



МЕТАЛЛ ИЗ ПИРОЛЮЗИТА

Металлические оксиды можно разложить при взаимодействии с более активными металлами, которые вытесняют менее активные из соединений с кислородом. В качестве восстановителей особенно часто применяют алюминий, магний и натрий. Реакция с магнием протекает очень бурно, и в результате образуются сильно загрязненные продукты, поэтому мы применим безвредный алюминий. Но и при выполнении следующих опытов следует точно соблюдать количественные соотношения веществ и правила техники безопасности!



Получим марганец

Смешаем 6 г оксида марганца (пиролюзита) МnО2 и 2 г алюминиевых опилок или очень тонкой стружки. Смесь положим на большой фарфоровый или глиняный черепок, помещенный на огнеупорной подставке. Для воспламенения насыплем на смесь небольшое количество (!) магниевого порошка и воткнем кусок магниевой ленты, которую осторожно подожжем. Чтобы можно было держаться на надлежащем расстоянии, укрепим бунзеновскую горелку на палке длиной около 1 м. Смесь также можно поджечь непосредственно бунзеновской горелкой, если направить на нее несветящееся пламя. Реакция протекает с яркой вспышкой. После охлаждения мы обнаружим темный комочек сплавленного марганца (содержание марганца 95— 98 %). Металл очень хрупок, его можно раздробить в порошок молотком — только делать это надо на стальной подставке. Свежие сколы на металле серебристо-белые, но на воздухе они быстро темнеют вследствие образования тонких пленок цветов побежалости.

Алюминий превращается в оксид алюминия по следующему уравнению:

3МnО2 + 4Аl  2Аl2О3 + 3Мn

При проведении опыта следует надеть защитные очки, так как в ходе реакций могут вылетать очень горячие искры. Вблизи не должно быть никаких легковоспламеняющихся предметов и веществ.

Если вас постигла неудача (воспламенения не произошло) ни в коем случае нельзя пытаться сразу близко рассматривать смесь. Подождите по меньшей мере 5 минут, так как нередко может последовать неожиданное «позднее зажигание».

Восстановление оксидов металлов металлическим алюминием называют алюмотермией. Аналогично можно восстановить оксиды никеля и хрома. Чтобы выход металла при алюмотермическом методе был выше, вместо порошка используют алюминиевую крупку; она не только реагирует не так бурно, но и воспламеняется труднее.

ПОЛУЧЕНИЕ МАГНИЯ ЭЛЕКТРОЛИЗОМ РАСПЛАВА

В одном из первых опытов мы разлагали воду на элементы с помощью электрического тока. Таким же образом можно разлагать соединения металлов, если пропускать через расплав соли постоянный ток. Расплавленные соли часто обладают значительной электропроводностью. Положительно заряженные ионы металлов выделяются в электрическом поле на отрицательном электроде (катоде), а анионы — на положительном электроде (аноде). Так можно получить очень активные металлы, но при этом они не должны реагировать с воздухом или материалом электрода.



Магний из карналлита

Английский химик Дэви в 1809 г. впервые получил натрий и калий путем электролиза расплава их соединений. Мы попытаемся получить таким же образом немного металлического магния.

Прежде всего для электролиза понадобится сильный источник постоянного тока. Можно воспользоваться аккумулятором с напряжением 12 В, причем не обязательно новым, так как опыт лучше всего удается при высокой силе тока, которая легко может привести к короткому замыканию и при этом испортить батарею. Также пригоден отслуживший автомобильный аккумулятор, который надо зарядить.

В качестве электролита для получения магния используем карналлит, смешанный хлорид калия — магния состава KCl-MgCl2-6H2O, который встречается, например, в отбросных солях Штасфурта. Безводная соль пригодна для электролитического получения магния благодаря относительно низкой точке плавления. Правда, чаще всего электролиты готовят искусственно, извлекая из различных магниевых минералов сначала оксид магния MgO, и затем получают из него хлорид магния MgCl2. Эту соль сплавляют с хлоридом калия и другими солевыми добавками.

В фарфоровой чашке при постоянном перемешивании и нагревании в минимальном количестве воды растворим 15 г кристаллического хлорида магния (горькой соли), 5 г хлорида калия и 2 г хлорида аммония; продолжая перемешивать, выпарим раствор досуха, нагреем остаток при температуре 300 °С, чтобы удалить из соли воду. После охлаждения разотрем соль в порошок и поместим в маленький фарфоровый тигель, который будет служить электролизной ячейкой. В качестве электродов используем угольный стержень и расплющенный гвоздь или, лучше, тонкую стальную полоску шириной примерно 10 мм. Чтобы избежать соединения магния и хлора, надо поставить между электродами разделительную стенку из асбестового картона; в нижней части ее гвоздем проделаем много маленьких отверстий. Картон перед опытом надо многократно нагреть над пламенем, чтобы удалить органические примеси.

После сборки ячейки подсоединим угольный стержень к положительному полюсу батареи, а стальной электрод — к отрицательному. Между батареей и ячейкой подключим в качестве сопротивления стальную проволоку длиной 2 м и диаметром 0,5 мм. Цепь будет разомкнута до тех пор, пока ее не подсоединят к клеммам аккумулятора.

Тигель надо нагревать самым сильным пламенем бунзеновской или стеклодувной горелки до тех пор, пока содержимое не расплавится. При этом будем перемешивать смесь стальным гвоздем или вязальной спицей. После этого уменьшим пламя и замкнем электроцепь. Через 20—30 минут прекратим опыт, выльем расплав из тигля, охладим и раздробим ножом. Мы обнаружим, особенно в околокатодном пространстве, шарики магния. Соберем их, погрузим на короткое время на фарфоровой или пластмассовой ложке в сильную соляную кислоту и бросим их тотчас в метиловый или в чистый этиловый спирт. На металле появится серебристый блеск, который, однако, на воздухе быстро тускнеет.

ЖЕЛЕЗО И НИКЕЛЬ В НЕОБЫЧНОЙ ФОРМЕ

Металлы можно получать также, нагревая легкоразлагаемые соединения. Так, большинство солей благородных металлов при нагревании распадаются на компоненты. Таким же образом можно получить неблагородные металлы в виде очень тонкого порошка, который чрезвычайно химически активен. Это мы можем изучить прежде всего на примере железа.



Каталог: book -> chem
book -> Умра мен қажылық жасаушыларға арналған жаднама Дайындаған Дамир Хайруддин Қазақ тіліне орыс тілінен аударған «Абу Ханифа мирасы»
book -> -
book -> Бандар ибн Найиф әл-Утайби «аллаһТЫҢ ТҮсіргеніне сәйкес емес басқару (билік қҰРУ) ЖӘне шешім шығару»
book -> -
book -> Білместікпен жасалған көпқұдайшылық (ширк) кешіріледі ме?
book -> ЖАҢа жылдың келуін мейрамдауды харам ететін себептер
book -> ЖАҢа жылдың келуін мейрамдауды харам ететін себептер
chem -> Химия для любознательных. Основы химии и занимательные опыты


Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   59


©netref.ru 2019
әкімшілігінің қараңыз

    Басты бет